Mechanism, kinetics, and pathways of self-sensitized sunlight photodegradation of phenylarsonic compounds.

Water Res

MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China. Electronic address:

Published: June 2016

Being highly water-soluble, phenylarsonic feed additives discharged in animal wastes can easily accumulate in surface water bodies. The photodegradation mechanism, kinetics, and pathways of p-arsanilic acid (p-ASA), 4-hydrophenylarsonic acid (4-HPAA), and phenylarsonic acid (PAA) in water under simulated and natural sunlight irradiation were investigated. The -AsO(OH)2 group was cleaved from the aromatic ring during photodegradation, and p-benzoquinone and p-hydroquinone were formed as the major organic degradation intermediates. Experimental results did not indicate any significant direct photolysis of the phenylarsonic compounds under simulated and natural sunlight irradiation, but consistently showed that they sensitized the formation of singlet oxygen, which was responsible for their photodegradation and oxidation of the As(III) released. A simple (1)O2-based "heterogeneous" model was developed, which could well describe the kinetics of (1)O2 formation and phenylarsonic compound photodegradation under various conditions. Indirect photolysis caused by inorganic ions commonly present in natural waters was negligible, while natural organic matter could significantly inhibit their photodegradation. The half-lives of p-ASA, 4-HPAA, and PAA photodegradation under simulated sunlight irradiation (765 W m(-2), 25 °C) were 11.82 ± 0.19, 20.06 ± 0.10, and 135 ± 6.0 min, respectively, while their degradation rates under natural sunlight in the Pearl River Delta of southern China were 5 times slower due to lower irradiation intensity and water temperatures (19-23 °C).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2016.03.053DOI Listing

Publication Analysis

Top Keywords

natural sunlight
12
sunlight irradiation
12
mechanism kinetics
8
kinetics pathways
8
phenylarsonic compounds
8
simulated natural
8
photodegradation
7
sunlight
5
phenylarsonic
5
natural
5

Similar Publications

The industrial sector faces a significant challenge in finding the highly effective and efficient treatments for harmful dye-based color effluents. In this study, pure and cobalt doped barium hexaferrite of chemical formula, BaCoFeO (x = 0-0.06) are made via sol-gel auto-combustion (SC) methodology.

View Article and Find Full Text PDF

Actuators based on liquid crystals have garnered significant attention due to their potential applications in wearable technology and bionic soft robots. Composite films composed of liquid crystal polymer networks (LCNs) and other stimulus-responsive materials exhibit the capability to convert external stimuli into mechanical deformation. However, the development of sunlight-driven actuators presents significant challenges, primarily due to the relatively low intensity of sunlight and the limited conversion efficiency of photothermal materials.

View Article and Find Full Text PDF

The functional units of natural photosynthetic systems control the process of converting sunlight into chemical energy. In this article, we explore a series of chemically and structurally modified bacteriochlorophyll and chlorophyll pigments through computational chemistry to evaluate their electronic spectroscopy properties. More specifically, we use multiconfigurational and time-dependent density functional theory methods, along with molecular dynamics simulations, to compute the models' energetics both in an implicit and explicit solvent environment.

View Article and Find Full Text PDF

Thiyl radicals are important reactive sulfur species and can cause cis to trans isomerization on unsaturated fatty acids. However, biocompatible strategies for the controlled generation of thiyl radicals are still lacking. In this work, we report the study of a series of naphthacyl-derived thioethers as photo-triggered thiyl radical precursors.

View Article and Find Full Text PDF

Covalent Organic Frameworks with Tunable Bridge Positions for Photocatalytic CO Reduction to Propylene Under Visible Light Illumination.

Small

December 2024

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China.

The use of sunlight to convert CO into multi-carbon fuels, particularly propylene, is considered a sustainable carbon cycle pathway, but propylene requires a multi-electron-coupled proton reaction process that has not been reported. Herein, two covalent organic frameworks (DA-COF and DP-COF) are prepared by varying the bridging positions of anthraquinone conjugated units. The experimental results show that the neighbouring bridge in DA-COF forms a unique cleavage structure like an enzyme catalyst, which can provide an efficient microenvironment for the reduction reaction to trap protons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!