The cyclic conotoxin analogue cVc1.1 is a promising lead molecule for the development of new treatments for neuropathic and chronic pain. The design of this peptide includes a linker sequence that joins the N and C termini together, improving peptide stability while maintaining the structure and activity of the original linear Vc1.1. The effect of linker length on the structure, activity and stability of cyclised conotoxins has been studied previously but the effect of altering the composition of the linker sequence has not been investigated. In this study, we designed three analogues of cVc1.1 with linker sequences that varied in charge, hydrophobicity and hydrogen bonding capacity and examined the effect on structure, stability, membrane permeability and biological activity. The three designed peptides were successfully synthesized using solid phase peptide synthesis approaches and had similar structures and stability compared with cVc1.1. Despite modifications in charge, hydrophobicity and hydrogen bonding potential, which are all factors that can affect membrane permeability, no changes in the ability of the peptides to pass through membranes in either PAMPA or Caco-2 cell assay were observed. Surprisingly, modification of the linker sequence was deleterious to biological activity. These results suggest the linker sequence might be a useful part of the molecule for optimization of bioactivity and not just the physiochemical properties of cVc1.1. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 864-875, 2016.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bip.22848DOI Listing

Publication Analysis

Top Keywords

linker sequence
20
biological activity
12
structure stability
8
structure activity
8
charge hydrophobicity
8
hydrophobicity hydrogen
8
hydrogen bonding
8
membrane permeability
8
linker
6
sequence
5

Similar Publications

Human rhinovirus C (HRV-C) is a significant contributor to respiratory tract infections in children and is implicated in asthma exacerbations across all age groups. Despite its impact, there is currently no licensed vaccine available for HRV-C. Here, we present a novel approach to address this gap by employing immunoinformatics techniques for the design of a multi-epitope-based vaccine against HRV-C.

View Article and Find Full Text PDF

Bone defects caused by trauma, infection, or tumors present a major clinical challenge. Titanium (Ti) implants are widely used due to their excellent mechanical properties and biocompatibility; however, their high elastic modulus, low surface bioactivity, and susceptibility to infection hinder osseointegration and increase failure rates. There is an increasing demand for implants that can resist bacterial infection while promoting osseointegration.

View Article and Find Full Text PDF

Acetylation-enhanced Sp1 transcriptional activity suppresses Mlph expression.

Sci Rep

January 2025

Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea.

Melanosome transport is regulated by major proteins, including Rab27a, Melanophilin (Mlph), and Myosin Va (Myo-Va), that form a tripartite complex. Mutation of these proteins causes melanosome aggregation around the nucleus. Among these proteins, Mlph is a linker between Rab27a and Myo-Va.

View Article and Find Full Text PDF

In this article we describe research on the synthesis and characterization of a family of "Janus" amphiphiles composed of disaccharide head groups and alkaloid units joined together via a methylene linker, and bearing a lateral aliphatic chain of varying length. The condensed phases formed by self-organization of the products as a function of temperature were characterized by differential scanning calorimetry, thermal polarized light microscopy, and small angle X-ray scattering, allied with computational modelling and simulations. Structural studies on heating specimens from the solid showed that some homologues exhibited lamellar, columnar and bicontinuous mesophases, whereas the same homologues revealed different phase sequences on cooling from the amorphous liquid.

View Article and Find Full Text PDF

Development of a broad-spectrum epitope-based vaccine against Streptococcus pneumoniae.

PLoS One

January 2025

Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh.

Streptococcus pneumoniae (SPN) is a significant pathogen causing pneumonia and meningitis, particularly in vulnerable populations like children and the elderly. Available pneumonia vaccines have limitations since they only cover particular serotypes and have high production costs. The emergence of antibiotic-resistant SPN strains further underscores the need for a new, cost-effective, broad-spectrum vaccine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!