What is the central question of this study? The goal of this study was to evaluate sex differences and the role of the potassium channel β1 (Kvβ1) subunit in the heart. What is the main finding and its importance? Genetic ablation of Kvβ1.1 in females led to cardiac hypertrophy characterized by increased heart size, prolonged monophasic action potentials, elevated blood pressure and increased myosin heavy chain α (MHCα) expression. In contrast, male mice showed only electrical changes. Kvβ1.1 binds the MHCα isoform at the protein level, and small interfering RNA targeted knockdown of Kvβ1.1 upregulated MHCα. Cardiovascular disease is the leading cause of death and debility in women in the USA, and cardiac arrhythmias are a major concern. Voltage-gated potassium (Kv) channels along with the binding partners; Kvβ subunits are major regulators of the action potential (AP) shape and duration (APD). The regulation of Kv channels by the Kvβ1 subunit is unknown in female hearts. In the present study, we hypothesized that the Kvβ1 subunit is an important regulator of female cardiac physiology. To test this hypothesis, we ablated (knocked out; KO) the KCNAB1 isoform 1 (Kvβ1.1) subunit in mice and evaluated cardiac function and electrical activity by using ECG, monophasic action potential recordings and echocardiography. Our results showed that the female Kvβ1.1 KO mice developed cardiac hypertrophy, and the hearts were structurally different, with enlargement and increased area. The electrical derangements caused by Kvβ1.1 KO in female mice included long QTc and QRS intervals along with increased APD (APD20-90% repolarization). The male Kvβ1.1 KO mice did not develop cardiac hypertrophy, but they showed long QTc and prolonged APD. Molecular analysis showed that several genes that support cardiac hypertrophy were significantly altered in Kvβ1.1 KO female hearts. In particular, myosin heavy chain α expression was significantly elevated in Kvβ1.1 KO mouse heart. Using a small interfering RNA strategy, we identified that knockdown of Kvβ1 increases myosin heavy chain α expression in H9C2 cells. Collectively, changes in molecular and cell signalling pathways clearly point towards a distinct electrical and structural remodelling consistent with cardiac hypertrophy in the Kvβ1.1 KO female mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827621 | PMC |
http://dx.doi.org/10.1113/EP085405 | DOI Listing |
Int J Cardiovasc Imaging
January 2025
Michigan Medicine, University Hospital, Floor B1 Reception C 1500 E Medical Center Dr SPC 5030, Ann Arbor, MI, 48109, USA.
Anderson-Fabry disease (AFD) is a X-linked lysosomal storage disorder that can result in cardiac dysfunction including left ventricular hypertrophy (LVH) and conduction abnormalities (Frontiers in cardiovascular medicine vol. 10) [1]. The manifestations of AFD in women may be isolated to one organ and occur late in life due to the random inactivation of the X chromosome.
View Article and Find Full Text PDFEndocr Connect
January 2025
P Kamenický, Centre de Référence des Maladies Rares de l'Hypophyse, Le Kremlin-Bicêtre, 94275, France.
Background: Arterial hypertension and left ventricular hypertrophy and remodeling are independent cardiovascular risk factors in patients with Cushing's syndrome. Changes in the renin-angiotensin system and in the mineralocorticoid axis activity could be involved as potential mechanisms in their pathogenesis, in addition to cortisol excess.
Methods: In this ancillary study of our previous study prospectively investigating patients with ACTH-dependent Cushing's syndrome by cardiac magnetic resonance imaging (NCT02202902), 11 patients without any interfering medication were cross-sectionally compared to 20 control subjects matched for age, sex and body mass index.
J Mol Cell Cardiol Plus
September 2024
Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
The adult mammalian heart is unable to undergo cardiac repair, limiting potential treatment options after cardiac damage. However, the fetal heart is capable of cardiac repair. In preparation for birth, cardiomyocytes (CMs) undergo major maturational changes that include exit from the cell cycle, hypertrophic growth, and mitochondrial maturation.
View Article and Find Full Text PDFThe cardioprotective effects of histone deacetylase (HDAC) inhibitors (HDIs) are at odds with the deleterious effects of HDAC depletion. Here, we use HDAC3 as a prototype HDAC to address this contradiction. We show that adult-onset cardiac-specific depletion of HDAC3 in mice causes cardiac hypertrophy and contractile dysfunction on a high-fat diet (HFD), excluding developmental disruption as a major reason for the contradiction.
View Article and Find Full Text PDFCureus
December 2024
Nephrology, Ibn Sina Hospital, Rabat, Rabat, MAR.
Cryoglobulinemic vasculitis is a rare small-vessel vasculitis leading to multi-organ dysfunction, often associated with chronic infections like hepatitis C virus (HCV), and autoimmune disorders. Most cases involve mixed monoclonal or polyclonal immunoglobulins, presenting symptoms such as purpura, arthralgias, and weakness. Severe organ involvement, particularly cardiac, is rare but potentially life-threatening.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!