Optical properties of PM2.5 and the impacts of chemical compositions in the coastal city Xiamen in China.

Sci Total Environ

Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China. Electronic address:

Published: July 2016

Continuous in situ measurements of optical properties of fine aerosols (PM2.5) were conducted in the urbanized coastal city Xiamen in Southeast China from November 2013 to January 2014. PM2.5 samples were also collected and chemical compositions including organic carbon (OC), elemental carbon (EC) and water-soluble inorganic ions were determined to investigate the impacts of chemical compositions on aerosol optical properties. Average values of scattering coefficient (bscat), absorption coefficient (babs), extinction coefficient (bext) and single scattering albedo (SSA) were 164.0Mm(-1), 22.4Mm(-1), 187.0Mm(-1) and 0.88, respectively. bscat, babs and bext showed obvious bi-modal diurnal variations with high values in the morning and at night while low value in the early afternoon, whereas SSA exhibited an opposite diurnal variation. Average bscat and babs were largest in the wind direction of southwest and were larger with slower wind. babs was mainly affected by EC, while bscat was affected by ammonium, sulfate, nitrate and OC. The IMPROVE formula was applied to estimate bext based on the chemical species. Results shows that ammonium sulfate was the largest contributor, accounting for 36.4% of bext, followed by organic matter (30.6%), ammonium nitrate (20.1%), EC (9.0%) and sea salt (3.9%). The deterioration in visibility was mainly led by increases in secondary aerosols including sulfate and nitrate. Backward trajectories analysis showed that during the sampling period Xiamen was significantly affected by the air masses originating from the Northern and Northeastern areas. Air masses from the Northern associated with relative higher bext and less relative contribution from ammonium sulfate and more relative contribution from ammonium nitrate, organic matter and sea salt.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2016.03.143DOI Listing

Publication Analysis

Top Keywords

optical properties
12
chemical compositions
12
ammonium sulfate
12
impacts chemical
8
coastal city
8
city xiamen
8
bscat babs
8
sulfate nitrate
8
organic matter
8
ammonium nitrate
8

Similar Publications

In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.

View Article and Find Full Text PDF

The current research aims to determine the impact of orange peel dye (OPD), an eco-friendly addition, on the optical properties of biodegradable polymers. This study investigates the enhancement of optical properties in solid electrolytes based on chitosan (CS) and glycerol, with varying OPD concentrations. UV-Vis-NIR spectroscopy revealed significantly enhanced UV-visible light absorption in the 200-500 nm region and effective UV light blocking.

View Article and Find Full Text PDF

Liquid-based encapsulation for implantable bioelectronics across broad pH environments.

Nat Commun

January 2025

Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.

Wearable and implantable bioelectronics that can interface for extended periods with highly mobile organs and tissues across a broad pH range would be useful for various applications in basic biomedical research and clinical medicine. The encapsulation of these systems, however, presents a major challenge, as such devices require superior barrier performance against water and ion penetration in challenging pH environments while also maintaining flexibility and stretchability to match the physical properties of the surrounding tissue. Current encapsulation materials are often limited to near-neutral pH conditions, restricting their application range.

View Article and Find Full Text PDF

Green preparation of highly transparent nano-NH-UiO(Zr)-66/cellulose composite films with high-strength, superior flame retardant and UV to high-energy blue light shielding performance.

Int J Biol Macromol

January 2025

Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China. Electronic address:

From the perspective of sustainable development and practical applications, there is a significant demand for the design of advanced cellulose-based film materials with superior mechanical, optical, and functional properties utilizing environmentally friendly strategies. Herein, biodegradable, mechanically robust and flame-retardant cellulose films with adjustable optical performance were successfully fabricated by in situ synthesis of NH-UiO(Zr)-66 via a DMF-free green process at room temperature. The results indicate that the introduction of NH-UiO(Zr)-66 enables films to realize a desirable flame retardancy (the limiting oxygen index (LOI) increased significantly from 19.

View Article and Find Full Text PDF

Conventional treatments for autoimmune uveitis, such as corticosteroids and systemic immunosuppressants, often result in adverse side effects, prompting the need for therapies targeting specific molecular pathways. This study investigates the effects of Arctiin, known for its diverse biological properties, on experimental autoimmune uveitis (EAU) through its action on Th17 cells and the JAK/STAT signaling pathway. Our findings reveal that Arctiin significantly alleviates EAU by reducing clinical scores, inflammatory cell infiltration, and levels of inflammatory cytokines like IL-17 and TNF-α in the eye.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!