Facultative autotrophs are abundant components of communities inhabiting geothermal springs. However, the influence of uptake kinetics and energetics on preference for substrates is not well understood in this group of organisms. Here, we report the isolation of a facultatively autotrophic crenarchaeote, strain CP80, from Cinder Pool (CP, 88.7°C, pH 4.0), Yellowstone National Park. The 16S rRNA gene sequence from CP80 is 98.8% identical to that from Thermoproteus uzonensis and is identical to the most abundant sequence identified in CP sediments. Strain CP80 reduces elemental sulfur (S8°) and demonstrates hydrogen (H2)-dependent autotrophic growth. H2-dependent autotrophic activity is suppressed by amendment with formate at a concentration in the range of 20-40 μM, similar to the affinity constant determined for formate utilization. Synthesis of a cell during growth with low concentrations of formate required 0.5 μJ compared to 2.5 μJ during autotrophic growth with H2 These results, coupled to data indicating greater C assimilation efficiency when grown with formate as compared to carbon dioxide, are consistent with preferential use of formate for energetic reasons. Collectively, these results provide new insights into the kinetic and energetic factors that influence the physiology and ecology of facultative autotrophs in high-temperature acidic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsec/fiw069 | DOI Listing |
J Colloid Interface Sci
January 2025
State Key Laboratory of Silicon and Advanced Semiconductor Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China. Electronic address:
The application and further industrialization of magnesium hydride (MgH) are restricted by its intrinsically high de-hydrogenation temperature and dragged kinetics though it is believed as one of the most encouraging solid-state hydrogen storage materials with considerable capacity. Herein, a bimetallic layered MXene VNbC, which was mixed with MgH by high energy ball milling, was obtained by etching compact layered MAX VNbAlC with HF. The beginning de-hydrogenation temperature of the as-prepared MgH blended with 10 wt% VNbC (denoted as MgH-10 VNbC) composites was excitingly 170 °C and it exhibited faster kinetics and excellent cycling stability.
View Article and Find Full Text PDFACS Omega
January 2025
Nanotechnology, IoT and Applied Machine Learning Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh.
Nanoparticles embedded in polymer matrices play a critical role in enhancing the properties and functionalities of composite materials. Detecting and quantifying nanoparticles from optical images (fixed samples-in vitro imaging) is crucial for understanding their distribution, aggregation, and interactions, which can lead to advancements in nanotechnology, materials science, and biomedical research. In this article, we propose an ensembled deep learning approach for automatic nanoparticle detection and oligomerization quantification in a polymer matrix for optical images.
View Article and Find Full Text PDFEcho Res Pract
January 2025
School of Human Kinetics, Trinity Western University, CANIL Building, Rm. 115 22500 University Drive, Langley, BC, V2Y 1Y1, Canada.
Background: Aerobic capacity measured by maximal oxygen uptake (VOmax) is related to functional capacity and is a strong independent predictor of all-cause and disease-specific mortality. Sex-specific cardiac and vascular responses to endurance training have been observed, however, their relative contributions to VOmax are less understood. The purpose of this study was to evaluate sex-specific ventricular-vascular interactions associated with VOmax in healthy males and females.
View Article and Find Full Text PDFAquat Toxicol
January 2025
IHEM Instituto de Histología y Embriología de Mendoza CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Fisiología, Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina. Electronic address:
This study examines the kinetics of absorption, distribution and accumulation of arsenite (As III) in the freshwater gastropod Pomacea canaliculata using a short-lived tracer (As III). The toxicokinetic model indicate that the gills play a crucial role in the As III uptake, with uptake rates significantly exceeding those of release back into the aquatic environment. The movement of As III from the gills to the hemolymph has low exchange rate.
View Article and Find Full Text PDFCurr Opin Biotechnol
January 2025
Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA; Nanovaccine Institute, Iowa State University, Ames, IA, USA. Electronic address:
Metabolic modeling is essential for understanding the mechanistic bases of cellular metabolism in various organisms, from microbes to humans, and the design of fitter microbial strains. Metabolic networks focus on the overall fluxes through biochemical reactions that implicitly rely on several biochemical processes, such as active or diffusive uptake (or export) of nutrients (or metabolites), enzymatic turnover of metabolites, and metal-cofactor enzyme interactions. Despite independent progress in biomolecular simulations, they have yet to be integrated to inform metabolic models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!