Techniques to Distinguish Apoptosis from Necroptosis.

Cold Spring Harb Protoc

The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, United Kingdom;

Published: April 2016

The processes by which cells die are as tightly regulated as those that govern cell growth and proliferation. Recent studies of the molecular pathways that regulate and execute cell death have uncovered a plethora of signaling cascades that lead to distinct modes of cell death, including "apoptosis," "necrosis," "autophagic cell death," and "mitotic catastrophe." Cells can readily switch from one form of death to another; therefore, it is vital to have the ability to monitor the form of death that cells are undergoing. A number of techniques are available that allow the detection of cell death and when combined with either knockdown approaches or inhibitors of specific signaling pathways, such as caspase or RIP kinase pathways, they allow the rapid dissection of divergent cell death pathways. However, techniques that reveal the end point of cell death cannot reconstruct the sequence of events that have led to death; therefore, they need to be complemented with methods that can distinguish all forms of cell death. Apoptotic cells frequently undergo secondary necrosis under in vitro culture conditions; therefore, novel methods relying on high-throughput time-lapse fluorescence video microscopy are necessary to provide temporal resolution to cell death events. Further, visualizing the assembly of multiprotein signaling hubs that can execute apoptosis or necroptosis helps to explore the underlying processes. Here we introduce a suite of techniques that reliably distinguish necrosis from apoptosis and secondary necrosis, and that enable investigation of signaling platforms capable of instructing apoptosis or necroptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1101/pdb.top070375DOI Listing

Publication Analysis

Top Keywords

cell death
28
apoptosis necroptosis
12
death
10
cell
9
form death
8
secondary necrosis
8
techniques
4
techniques distinguish
4
apoptosis
4
distinguish apoptosis
4

Similar Publications

Purpose Of Review: This paper reviewed the current literature on incidence, clinical manifestations, and risk factors of Chimeric Antigen Receptor T-cell (CAR-T) cardiotoxicity.

Recent Findings: CAR-T therapy has emerged as a groundbreaking treatment for hematological malignancies since FDA approval in 2017. CAR-T therapy is however associated with a few side effects, among which cardiotoxicity is of significant concern.

View Article and Find Full Text PDF

Silymarin: a promising modulator of apoptosis and survival signaling in cancer.

Discov Oncol

January 2025

Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.

Cancer, one of the deadliest diseases, has remained the epicenter of biological research for more than seven decades. Yet all the efforts for a perfect therapeutic cure come with certain limitations. The use of medicinal plants and their phytochemicals as therapeutics has received much attention in recent years.

View Article and Find Full Text PDF

Background: Electromagnetic radiation (EMR) from wireless technology and mobile phones, operates at various frequencies. The present study analyses the major impact of short-term exposure to 2.4 GHz frequency EMR, using the two model systems chick embryos and SH-SY5Y cell lines.

View Article and Find Full Text PDF

CaMKIIγ advances chronic intermittent hypoxia-induced cardiomyocyte apoptosis via HIF-1 signaling pathway.

Sleep Breath

January 2025

Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.

Background: Our previous study have demonstrated chronic intermittent hypoxia (CIH) induced cardiomyocyte apoptosis and cardiac dysfunction. However, the molecular mechanisms are complicated and varied. In this study, we first investigated the CaMKIIγ expression and signaling pathway in the pathogenesis of cardiomyocyte apoptosis after CIH.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is one of the most serious and common complications in the course of sepsis, known for its poor prognosis and high mortality rate. Recently, ferroptosis, as a newly discovered regulatory cell death, might be closely associated with the progression of AKI. METTL14 is a writer of RNA m6A, an abundant epigenetic modification in transcriptome with broad function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!