Current approaches for the treatment of skeletal defects are suboptimal, principally because the ability of bone to repair and regenerate is poor. Although the promise of effective cellular therapies for skeletal repair is encouraging, these approaches are limited by the risks of infection, cellular contamination, and tumorigenicity. Development of a pharmacological approach would therefore help avoid some of these potential risks. This study identifies transforming growth factor beta (TGFβ) signaling as a potential pathway for pharmacological modulation in vivo. We demonstrate that inhibition of TGFβ signaling by the small molecule SB431542 potentiates calvarial skeletal repair through activation of bone morphogenetic protein (BMP) signaling on osteoblasts and dura mater cells participating in healing of calvarial defects. Cells respond to inhibition of TGFβ signaling by producing higher levels of BMP2 that upregulates inhibitory Smad6 expression, thus providing a negative feedback loop to contain excessive BMP signaling. Importantly, study on human osteoblasts indicates that molecular mechanism(s) triggered by SB431542 are conserved. Collectively, these data provide insights into the use of small molecules to modulate key signaling pathways for repairing skeletal defects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876548PMC
http://dx.doi.org/10.1089/ten.TEA.2015.0527DOI Listing

Publication Analysis

Top Keywords

tgfβ signaling
12
small molecule
8
transforming growth
8
growth factor
8
factor beta
8
skeletal defects
8
skeletal repair
8
inhibition tgfβ
8
bmp signaling
8
signaling
7

Similar Publications

Growing evidence suggests that plant compounds are emerging as a tremendous source for slowing the onset and progression of Alzheimer's disease (AD). Ursonic acid (UNA) is a naturally occurring pentacyclic triterpenoid with some hypoglycemic, anticancer, and antiinflammatory activities. However, the pharmacological effects of UNA on AD are still unknown.

View Article and Find Full Text PDF

Adventures in translation.

Purinergic Signal

January 2025

Regenosine, LLC, Princeton, NJ, USA.

View Article and Find Full Text PDF

Masquelet technique combined with concentrated growth factors for the reconstruction of rabbit mandibular marginal bone defect.

Clin Oral Investig

January 2025

Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, 350002, China.

Objective: Both the Masquelet technique (MT) and concentrated growth factors (CGF) reduce early graft loss and improve bone regeneration. This study aims to explore the efficacy of combining MT with CGF for mandibular defect repair by characterizing the induced membrane and assessing in vivo osteogenesis.

Materials And Methods: Three experimental groups were compared: negative control (NC), MT, and Masquelet combined with CGF (MTC).

View Article and Find Full Text PDF

Liquid biopsy technologies: innovations and future directions in breast cancer biomarker detection.

Biomed Microdevices

January 2025

Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China.

Globally, breast cancer is the most frequent type of cancer, and its early diagnosis and screening can significantly improve the probability of survival and quality of life of those affected. Liquid biopsy-based targets such as circulating tumor cells, circulating tumor DNA, and exosomes have been instrumental in the early discovery of cancer, and have been found to be effective in stage therapy, recurrence monitoring, and drug selection. Biosensors based on these target related biomarkers convert the tested substances into quantifiable signals such as electrical and optical signals through signal transduction, which has the advantages of high sensitivity, simple operation, and low invasiveness.

View Article and Find Full Text PDF

Purpose: To evaluate the effects of four-dimensional noise reduction filtering using a similarity algorithm (4D-SF) on the image quality and tumor visibility of low-dose dynamic computed tomography (CT) in evaluating breast cancer.

Materials And Methods: Thirty-four patients with 38 lesions who underwent low-dose dynamic breast CT and were pathologically diagnosed with breast cancer were enrolled. Dynamic CT images were reconstructed using iterative reconstruction alone or in combination with 4D-SF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!