In this study, a fully variable elliptical phase retarder was developed by combining a variable linear phase retarder and a half-wave plate. All three polarization parameters of the elliptical phase retarder (elliptical phase retardation γ, azimuth angle θ, and ellipticity angle ε) were adjustable. Experimental verification was performed by measuring the polarization parameters with a polarizer-sample-analyzer polarimeter. The polarization parameters were set to γ = 120°, ε = 15°, and θ = 20°. The measurement results, γ = 119.838° ± 0.006°, ε = 14.659° ± 0.002°, and θ = 20.084° ± 0.002°, agreed with theoretical prediction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4943223 | DOI Listing |
Sci Rep
January 2025
Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, 11543, Saudi Arabia.
The Internet of Medical Things (IoMT) has revolutionized healthcare by bringing real-time monitoring and data-driven treatments. Nevertheless, the security of communication between IoMT devices and servers remains a huge problem because of the inherent sensitivity of the health data and susceptibility to cyber threats. Current security solutions, including simple password-based authentication and standard Public Key Infrastructure (PKI) approaches, typically do not achieve an appropriate balance between security and low computational overhead, resulting in the possibility of performance bottlenecks and increased vulnerability to attacks.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China.
In this study, a (TiB + TiC + YO)/α-Ti composite was prepared by induction skull melting to investigate its creep behavior and microstructure evolution under different temperatures and stresses. The results show that the microstructure of the composite in the as-cast state is a basket-weave structure, and the main phase composition is α lamella, containing a small amount of β phase and equiaxed α phase. The creep life of the composite decreases significantly when the temperature is increased from 650 °C to 700 °C, and the steady-state creep rate is increased by 1 to 2 orders of magnitude.
View Article and Find Full Text PDFJ Biomech Eng
January 2025
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Yuquan Campus, 38 Zheda Road, Hangzhou 310027, Zhejiang, China; Shanghai Institute for Advanced Study of Zhejiang University, Zhangjiang Guochuang Center phase, No.799, Dangui Road, Shanghai 200120, China.
The carotid and vertebral arteries are principal conduits for cerebral blood supply and are common sites for atherosclerotic plaque formation. To date, there has been extensive clinical and hemodynamic reporting on carotid arteries; however, studies focusing on the hemodynamic characteristics of the vertebral artery (VA) are notably scarce. This article presents a systematic analysis of the impact of VA diameter and the angle of divergence from the subclavian artery (SA) on hemodynamic properties, facilitated by the construction of an idealized VA geometric model.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institute for Structure and Function and Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 400044, People's Republic of China and Center of Quantum Materials and Devices, Chongqing University, Chongqing 400044, People's Republic of China.
Sci Rep
December 2024
Department of Electrical Engineering, Centre for NEMS and Nanophotonics (CNNP), Indian Institute of Technology Madras, Chennai, 600036, India.
Transmission-type plasmonic phase metasurfaces utilizing the Pancharatnam-Berry (PB) phase require constant transmittivity with complete phase variation from 0 to 2π. Usually, this is achieved by rotating metallic nanoparticles in an otherwise uniform lattice arrangement. However, this rotation and the chosen lattice structure cause a significant change in the transmittivity, resulting in a lower intensity of light with certain phases and a higher intensity for other phases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!