A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated assessment of early hypoxic brain edema in non-enhanced CT predicts outcome in patients after cardiac arrest. | LitMetric

Automated assessment of early hypoxic brain edema in non-enhanced CT predicts outcome in patients after cardiac arrest.

Resuscitation

Institute of Neuroradiology, University Hospital of Luebeck, Germany; Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Germany. Electronic address:

Published: July 2016

Introduction: Early prediction of potential neurological recovery in patients after cardiac arrest is challenging. Recent studies suggest that the densitrometic gray-white matter ratio (GWR) determined from cranial computed tomography (CT) scans may be a reliable predictor of poor outcome. We evaluated an automated, rater independent method to determine GWR in CT as an early objective imaging predictor of clinical outcome.

Methods: We analyzed imaging data of 84 patients after cardiac arrest that underwent noncontrast CT within 24h after arrest. To determine GWR in CT we applied two methods using a recently published automated probabilistic gray-white matter segmentation algorithm (GWR_aut) and conventional manual measurements within gray-white regions of interest (GWR_man). Neurological outcome was graded by the cerebral performance category (CPC). As part of standard routine CPC was assessed by the treating physician in the intensive care unit at admission and at discharge to normal ward. The performance of GWR measures (automated and manual) to predict the binary clinical endpoints of poor (CPC3-5) and good outcome (CPC1-2) was assessed by ROC analysis with increasing discrimination thresholds. Results of GWR_aut were compared to GWR_man of two raters.

Results: Of 84 patients, 55 (65%) showed a poor outcome. ROC curve analysis revealed reliable outcome prediction of GWR_aut (AUC 0.860) and GWR_man (AUC 0.707 and 0.699, respectively). Predictive power of GWR_aut was higher than GWR_man by each rater (p=0.019 and p=0.021, respectively) at an optimal cut-off of 1.084 to predict poor outcome (optimal criterion with 92.7% sensitivity, 72.4% specificity). Interrater reliability of GWR_man by intra-class correlation coefficient (ICC) was moderate (0.551).

Conclusion: Automated quantification of GWR in CT may be used as an objective observer-independent imaging marker for outcome in patients after cardiac arrest.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resuscitation.2016.03.018DOI Listing

Publication Analysis

Top Keywords

patients cardiac
16
cardiac arrest
16
poor outcome
12
outcome
8
outcome patients
8
gray-white matter
8
determine gwr
8
automated
5
patients
5
arrest
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!