A quantitative metrology for performance characterization of five breast tomosynthesis systems based on an anthropomorphic phantom.

Med Phys

Carl E. Ravin Advanced Imaging Laboratories, Departments of Radiology, Electrical and Computer Engineering, Biomedical Engineering, and Physics, Clinical Imaging Physics Group, Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705.

Published: April 2016

Purpose: In medical imaging systems, proper rendition of anatomy is essential in discerning normal tissue from disease. Currently, digital breast tomosynthesis (DBT) systems are evaluated using subjective evaluation of lesion visibility in uniform phantoms. This study involved the development of a new methodology to objectively measure the rendition of a 3D breast model by an anthropomorphic breast phantom, and its implementation on five clinical DBT systems of different makes and models.

Methods: A 3D, patient-based breast phantom was fabricated based on XCAT breast models. This phantom was imaged on representative breast tomosynthesis systems. The ability of tomosynthesis systems to accurately reproduce the 3D structure of the breast was assessed by computational analysis of the resultant images in terms of three groups of indices: contrast index (CI), reflective of local difference between adipose and glandular material; adipose variability index (AVI), reflective of contributions of noise and artifacts within uniform adipose regions; and contrast detectability, which describes contrast against local background variability and is described by contrast variability index (CVI), coefficient of variation (COV), contrast to adipose variability index (CAVI), and contrast to noise ratio index (CNRI). The indices were obtained by comparing the image data to the gold standard 3D distribution of breast tissue in the model. Corresponding indices were measured within variable region of interest (ROI) sizes ranging from 10 to 37 mm. The characterization was performed on five tomosynthesis systems: Fuji Aspire Crystal, GE Essential, Hologic Dimension, IMS Giotto, and Siemens Inspiration, all evaluated at a fixed dose of 1.5 mGy average glandular dose, anonymized in random order from A to E.

Results: Results are provided as a function of ROI size. The systems ranked orders in terms of CI with values of 7.4%, 7.0%, 6.9%, 6.4%, and 5.2% for systems A-E, respectively. This system ranking was identical for CNRI. Both CI and CNRI were constant over ROI size. The ranking was similar for CVI. The COV also changed little with ROI size and was similar across systems. For 10 mm ROIs, the average system COV was 0.7, which reduced to 0.5 with 37 mm ROIs. Two systems (A and B) exhibited highest AVI values when measured in 10 mm ROIs. This, however, was ROI-size-dependent with the three other systems (C-E) yielding higher AVI values when measured with 37 mm ROIs. Two systems (B and E) showed inferior CAVI compared to others.

Conclusions: The quality of rendition tracked with differences in image appearance across systems. The findings illustrate that the anthropomorphic phantom can be used as a basis to extract quantitative values of image attributes in DBT.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.4943373DOI Listing

Publication Analysis

Top Keywords

tomosynthesis systems
16
systems
14
breast tomosynthesis
12
roi size
12
breast
9
anthropomorphic phantom
8
dbt systems
8
breast phantom
8
adipose variability
8
size systems
8

Similar Publications

Examining the influence of digital phantom models in virtual imaging trials for tomographic breast imaging.

J Med Imaging (Bellingham)

January 2025

University of Houston, Department of Biomedical Engineering, Houston, Texas, United States.

Purpose: Digital phantoms are one of the key components of virtual imaging trials (VITs) that aim to assess and optimize new medical imaging systems and algorithms. However, these phantoms vary in their voxel resolution, appearance, and structural details. We investigate whether and how variations between digital phantoms influence system optimization with digital breast tomosynthesis (DBT) as a chosen modality.

View Article and Find Full Text PDF

Purpose: Digital breast tomosynthesis (DBT) has been introduced more than a decade ago. Studies have shown higher breast cancer detection rates and lower recall rates, and it has become an established imaging method in diagnostic settings. However, full-field digital mammography (FFDM) remains the most common imaging modality for screening in many countries, as it delivers high-resolution planar images of the breast.

View Article and Find Full Text PDF

 Synthesized mammography (SM) refers to two-dimensional (2D) images derived from the digital breast tomosynthesis (DBT) data. It can reduce the radiation dose and scan duration when compared with conventional full-field digital mammography (FFDM) plus tomosynthesis.  To compare the diagnostic performance of 2D FFDM with synthetic mammograms obtained from DBT in a diagnostic population.

View Article and Find Full Text PDF

Longitudinal in silico imaging study comparing digital mammography and digital breast tomosynthesis systems.

Med Phys

December 2024

U.S. Food and Drug Administration, Silver Spring, Maryland, USA.

Background: In silico clinical trials are becoming more sophisticated and allow for realistic assessment and comparisons of medical image system models. These fully computational models enable fast and affordable trial designs that can closely capture trends seen on real clinical trials.

Purpose: To evaluate three breast imaging system models for digital mammography (DM) and digital breast tomosynthesis (DBT) in a fully-in-silico longitudinal study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!