New technologies able to mitigate the main abiotic stresses (i.e., drought, salinity, cold and heat) represent a substantial opportunity to contribute to a sustainable increase of agricultural production. In this context, the recently discovered phytohormone strigolactone is an important area of study which can underpin the quest for new anti-stress technologies. The pleiotropic roles played by strigolactones in plant growth/development and in plant adaptation to environmental changes can pave the way for new innovative crop enhancement applications. Although a significant scientific effort has been dedicated to the strigolactone subject, an updated review with emphasis on the crop protection perspective was missing. This paper aims to analyze the advancement in different areas of the strigolactone domain and the implications for agronomical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2016.03.072 | DOI Listing |
Front Biosci (Elite Ed)
November 2024
Department of Life Sciences, GITAM School of Science, Gandhi Institute of Technology and Management, 530045 Visakhapatnam, Andhra Pradesh, India.
Background: Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed ( L.) at copper action.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Shandong Key Laboratory of Agricultural Microbiology, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China.
Saline-alkali land is a type of soil environment that causes poor crop growth and low yields. Its management and utilization are, therefore of great significance for increasing arable land resources, ensuring food security, and enhancing agricultural production capacity. The application of plant growth-promoting rhizobacteria (PGPR) is an effective way to promote the establishment of symbiotic relationships between plants and the rhizosphere microenvironment, plant growth and development, and plant resistance to saline-alkali stress.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
December 2024
Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China. Electronic address:
SREBP1 is a transcription factor that influences lipogenesis by regulating key genes associated with lipid biosynthesis, while AMPK, modulates lipid metabolism by regulating acetyl-CoA carboxylase. The exact role of these metabolic regulators in oleaginous microbes remains unclear. This study identified and manipulated the genes encoding SREBP1 (sre1) and α1 subunit of AMPK (ampk-α1) in Mucor circinelloides WJ11.
View Article and Find Full Text PDFMol Phylogenet Evol
December 2024
Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
In plants, cellular function is orchestrated by three distinct genomes located within the nucleus, mitochondrion, and plastid. These genomes are interdependent, requiring tightly coordinated maintenance and expression. Plastids host several multisubunit protein complexes encoded by both the plastid and nuclear genomes.
View Article and Find Full Text PDFPlant Sci
December 2024
National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China. Electronic address:
Forward genetic screens have uncovered numerous genes involved in DNA methylation regulation, but these methods are often time-intensive, costly, and labor-intensive. To address these limitations, this study utilized CRISPR technology to knockout selected co-expressed genes, enabling the rapid identification of low luciferase (LUC) luminescence mutants in the Col-LUC line, which harbors a LUC transgene driven by a 2×35S promoter in Arabidopsis. As proof of concept, the repressor of silencing 1 (ROS1) and RNA-directed DNA methylation 1 (RDM1) genes were used as controls, while the increased DNA methylation 3 (IDM3) gene, co-expressed with ROS1, was selected as the target for gene knockout experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!