Objectives: Bone regeneration depends on perfusion of the fracture tissue, whereby hypervascularity is associated with infection, which itself causes nonunions. To date, nonunion perfusion has not been assessed with contrast-enhanced sonography. The aim of this study was to evaluate the potential of contrast-enhanced sonography in the analysis of nonunion tissue perfusion.
Methods: Nonunion vascularity of 31 patients before revision surgery was prospectively examined with qualitative contrast-enhanced sonography and dynamic contrast-enhanced magnetic resonance imaging (MRI). Time-intensity curves from 2-minute contrast-enhanced sonographic video clips were generated, and parameters such as wash-in rate, rise time, and peak enhancement were quantified. On dynamic contrast-enhanced MRI, the initial area under the enhancement curve was quantified. Preoperative radiographs, computed tomograms, the clinical nonunion score, laboratory infection features, as well as contrast-enhanced sonographic and dynamic contrast-enhanced MRI perfusion were correlated with microbiological results from the nonunion tissue.
Results: Both qualitative and quantitative contrast-enhanced sonography showed significant differences between infected and aseptic nonunions (P = .015 and .020). The qualitative dynamic contrast-enhanced MRI analysis was not significant (P= .244), but after quantification, a strong correlation (P = .007) with microbiological results was noted. A receiver operating characteristic analysis calculated ideal cutoff values for quantitative contrast-enhanced sonography and dynamic contrast-enhanced MRI so that their combination detected infected nonunions with sensitivity and specificity of 88.9% and 77.3%, respectively. Clinical, radiologic, and laboratory examinations did not correlate with microbiological results (P > .05).
Conclusions: Contrast-enhanced sonography can visualize the vascularity of nonunions in real time, while quantification software allows for a semiobjective evaluation of bone perfusion. The correlations of both quantitative contrast-enhanced sonography and dynamic contrast-enhanced MRI with microbiological results show their high value for differentiation of infected from aseptic nonunions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7863/ultra.15.06107 | DOI Listing |
J Clin Med
December 2024
Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center, 66421 Homburg, Germany.
The aim of this study was to evaluate patients with hereditary hemorrhagic telangiectasia (HHT) for the potential reperfusion of pulmonary arteriovenous malformations (PAVM) treated by catheter embolization using coils or embolization plugs and to analyze causes of possible reperfusion in order to further improve treatment. This retrospective study analyzed the data of 345 patients who underwent screening for pulmonary arteriovenous malformations in cases of suspected or confirmed HHT (Osler's disease). Of these, 118 patients with PAVM that underwent catheter embolization and had at least one follow-up study were included in our study and evaluated for potential reperfusion.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Orthopaedic Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA.
Postoperative imaging of musculoskeletal tumors poses a significant diagnostic challenge for radiologists. The complexity arises from the need to differentiate between expected postoperative changes, potential complications, and local recurrence. The choice of imaging modality depends on the type of primary tumor.
View Article and Find Full Text PDFAcad Radiol
January 2025
Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China (Q-X.C., L-Q.Z., X-Y.W., H-X.Z., J-J.L., M-C.X., H-Y.S., Z-X.K.). Electronic address:
Rationale And Objectives: To propose a novel MRI-based hyper-fused radiomic approach to predict pathologic complete response (pCR) to neoadjuvant therapy (NAT) in breast cancer (BC).
Materials And Methods: Pretreatment dynamic contrast-enhanced (DCE) MRI and ultra-multi-b-value (UMB) diffusion-weighted imaging (DWI) data were acquired in BC patients who received NAT followed by surgery at two centers. Hyper-fused radiomic features (RFs) and conventional RFs were extracted from DCE-MRI or UMB-DWI.
Magn Reson Imaging
January 2025
Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 Da Hua Road, Dong Dan, Beijing 100730, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
Purpose: This study aimed to evaluate the diagnostic efficacy of time-dependent diffusion magnetic resonance imaging (td-dMRI) and dynamic contrast-enhanced MRI (DCE-MRI)-based kinetic heterogeneity in differentiating suspicious breast lesions (categorised as Breast Imaging Reporting and Data System 4 or 5).
Methods: This prospective study included 51 females with suspicious breast lesions who underwent preoperative breast MRI, including DCE-MRI and td-dMRI. Six kinetic parameters, namely peak, persistent, plateau, washout component, predominant curve type, and heterogeneity, were extracted from the DCE series using MATLAB and SPM software.
Curr Med Imaging
January 2025
Department of Pathology, Affiliated Jinhua Hospital Zhejiang University School of Medicine, Jinhua, Zhejiang, 32100, P. R. China.
Introduction: Mucinous Cystadenocarcinoma (MCA) of the breast remains a relatively rare condition, and to date, there is no systematic summary of its imaging manifestations. Therefore, this report presents a detailed account of the diagnosis and treatment of mucinous cystadenocarcinoma in a 40-year-old woman, with a particular focus on imaging findings. Additionally, we conducted a comprehensive literature review on this disease and summarized its key imaging features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!