A Gaussian, visible laser beam traveling in a hydrogel doped with NaI and Ru(bpy)3Cl2 spontaneously transforms into a localized, self-trapped beam, which propagates without diverging through the medium. The catalytic, laser-light-induced oxidation of I(-) by [Ru(bpy)3](2+) generates I3(-) species, which create a refractive index increase along the beam path. The result is a cylindrical waveguide, which traps the optical field as bound modes and suppresses natural diffraction. When the beam is switched off, diffusion of I3(-) erases the waveguide within minutes and the system reverts to its original composition, enabling regeneration of the self-trapped beam. Our findings demonstrate reversible self-trapping for the first time in a precisely controllable, molecular-level photoreaction and could open routes to circuitry-free photonics devices powered by the interactions of switchable self-trapped beams.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.6b00126 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!