Genomic and immunologic factors associated with viral pathogenesis in a lethal EV71 infected neonatal mouse model.

Mol Med Rep

Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China.

Published: May 2016

Hand, foot and mouth disease (HFMD) caused by enterovirus 71 (EV71) has emerged as a major health problem in China and worldwide. The present study aimed to understand the virological features of EV71 and host responses resulting from EV71 infection. Six different EV71 strains were isolated from HFMD patients with severe or mild clinical symptoms, and were analyzed for pathogenicity in vitro and in vivo. The results demonstrated that the six virus strains exhibited similar cytopathogenic effects on susceptible MA104 cells. However, marked differences in histological and immunopathological changes were observed when mice were inoculated with the different virus strains. Thus, the viruses studied were divided into two groups, highly or weakly pathogenic. Two representative virus strains, JN200804 and JN200803 (highly and weakly pathogenic, respectively) were studied further to investigate pathogenicity-associated factors, including genetic mutations and immunopathogenesis. The present study has demonstrated that highly pathogenic strains have stable genome and amino acid sequences. Notably, the present study demonstrated that a highly pathogenic strain induced a significant increase of the bulk CD4 T cell levels at 3 days post‑inoculation. In conclusion, the current study demonstrates that genomic and immunologic factors may be responsible for the multiple tissue damage caused by highly pathogenic EV71 infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838153PMC
http://dx.doi.org/10.3892/mmr.2016.5080DOI Listing

Publication Analysis

Top Keywords

virus strains
12
highly pathogenic
12
genomic immunologic
8
immunologic factors
8
ev71 infection
8
highly weakly
8
weakly pathogenic
8
study demonstrated
8
demonstrated highly
8
ev71
6

Similar Publications

Background: We continue to struggle with the prevention and treatment of the influenza virus. The 2009 swine flu pandemic, caused by the H1N1 strain of influenza A, resulted in numerous fatalities. The threat of influenza remains a significant concern for global health, and the development of novel drugs targeting these viruses is highly desirable.

View Article and Find Full Text PDF

Synthesis, characterization and biological profile of some new dihydropyrimidinone derivaties.

Heliyon

January 2025

Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan, 44000.

Objective: The rise of drug-resistant bacteria, viruses, and fungi has prompted the search for new drugs without cross-resistance to current treatments. As a result, the aim of this research was to synthesize various types of dihydropyrimidinones heterocyclic compounds and screened them for their antibiotic properties.

Methodology: Newly synthesized dihydropyrimidinone derivatives were characterized spectroscopically using proton NMR (HNMR), and FT-IR.

View Article and Find Full Text PDF

African swine fever (ASF), a severe and highly contagious haemorrhagic viral disease of pigs, is becoming a major threat not only in Malaysia but around the world. The first confirmed case of ASF in Malaysia was reported in February 2021. Despite the emergence of ASF in Malaysia, genetic information on this causative pathogen for the local livestock is still limited.

View Article and Find Full Text PDF

Clade 2.3.4.4b but not historical clade 1 HA replicating RNA vaccine protects against bovine H5N1 challenge in mice.

Nat Commun

January 2025

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.

The ongoing circulation of influenza A H5N1 in the United States has raised concerns of a pandemic caused by highly pathogenic avian influenza. Although the United States has stockpiled and is prepared to produce millions of vaccine doses to address an H5N1 pandemic, currently circulating H5N1 viruses contain multiple mutations within the immunodominant head domain of hemagglutinin (HA) compared to the antigens used in stockpiled vaccines. It is unclear if these stockpiled vaccines will need to be updated to match the contemporary H5N1 strains.

View Article and Find Full Text PDF

This study aimed to develop patches containing quercetin-loaded microcapsules and to evaluate their in vitro and in vivo safety and efficacy in preclinical surveys. A set of in vitro experiments evidenced the virucidal activity of quercetin against the HSV-1-KOS (sensitive to acyclovir) and HSV-1-AR (resistant to acyclovir) strains, with improved outcomes upon the first. The patches presented a homogeneous aspect, were easily handled, had a suitable bioadhesion, and possessed mechanical properties of soft and weak material, besides a pH compatible with human skin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!