Rheb may complex with RASSF1A to coordinate Hippo and TOR signaling.

Oncotarget

Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, USA.

Published: June 2016

The TOR pathway is a vital component of cellular homeostasis that controls the synthesis of proteins, nucleic acids and lipids. Its core is the TOR kinase. Activation of the TOR pathway suppresses autophagy, which plays a vital but complex role in tumorigenesis. The TOR pathway is regulated by activation of the Ras-related protein Rheb, which can bind mTOR. The Hippo pathway is a major growth control module that regulates cell growth, differentiation and apoptosis. Its core consists of an MST/LATS kinase cascade that can be activated by the RASSF1A tumor suppressor. The TOR and Hippo pathways may be coordinately regulated to promote cellular homeostasis. However, the links between the pathways remain only partially understood. We now demonstrate that in addition to mTOR regulation, Rheb also impacts the Hippo pathway by forming a complex with RASSF1A. Using stable clones of two human lung tumor cell lines (NCI-H1792 and NCI-H1299) with shRNA-mediated silencing or ectopic overexpression of RASSF1A, we show that activated Rheb stimulates the Hippo pathway, but is suppressed in its ability to stimulate the TOR pathway. Moreover, by selectively labeling autophagic vacuoles we show that RASSF1A inhibits the ability of Rheb to suppress autophagy and enhance cell growth. Thus, we identify a new connection that impacts coordination of Hippo and TOR signaling. As RASSF1A expression is frequently lost in human tumors, the RASSF1A status of a tumor may impact not just its Hippo pathway status, but also its TOR pathway status.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5085121PMC
http://dx.doi.org/10.18632/oncotarget.8447DOI Listing

Publication Analysis

Top Keywords

tor pathway
20
hippo pathway
16
tor
9
pathway
9
complex rassf1a
8
hippo tor
8
tor signaling
8
cellular homeostasis
8
cell growth
8
pathway status
8

Similar Publications

MicroRNA (miR)-126 is frequently downregulated in malignancies, including breast cancer (BC). Despite its tumor-suppressive role, the mechanisms underlying miR-126 deregulation in BC remain elusive. Through silencing experiments, we identified Early B Cell Factor 1 (EBF1), ETS Proto-Oncogene 2 (ETS2), and Krüppel-Like Factor 2 (KLF2) as pivotal regulators of miR-126 expression.

View Article and Find Full Text PDF

In 2022, human breast cancer (HBC) and canine mammary tumors (CMTs) remained the most prevalent malignant tumors worldwide, with high recurrence and lethality rates, posing a significant threat to human and dog health. The development of breast cancer involves multiple signaling pathways, highlighting the need for effective inhibitory drugs that target key proteins in these pathways. This article reviews the dysregulation of the EGFR, PI3K/AKT/mTOR, Hippo, pyroptosis, and PD-1/PD-L1 signaling pathways in HBC and CMT, as well as the corresponding drugs used to inhibit tumor growth, with the aim of providing theoretical support for the development of more efficient drugs.

View Article and Find Full Text PDF

Non-Structural Protein V of Canine Distemper Virus Induces Autophagy via PI3K/AKT/mTOR Pathway to Facilitate Viral Replication.

Int J Mol Sci

December 2024

Key Laboratory of Veterinary Medicine in Universities of Sichuan Province, College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, 16 Yihuan Rd., Chengdu 610041, China.

Canine distemper (CD) is a highly infectious disease of dogs which is caused by canine distemper virus (CDV). Previous studies have demonstrated that CDV infection can induce autophagy in cells. However, the mechanism underlying CDV-induced autophagy remains not fully understood.

View Article and Find Full Text PDF

Structure- and Ligand-Based Virtual Screening for Identification of Novel TRPV4 Antagonists.

Molecules

December 2024

Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.

Transient receptor potential vanilloid (TRPV) 4 is involved in signaling pathways specifically mediating pain and inflammation, making it a promising target for the treatment of various painful and inflammatory conditions. However, only one drug candidate targeting TRPV4 has entered the clinical trials. To identify potential TRPV4 inhibitors for drug development, we screened a library of ion channel-modulating compounds using both structure- and ligand-based virtual screening approaches.

View Article and Find Full Text PDF

Targeting on the PI3K/mTOR: a potential treatment strategy for clear cell ovarian carcinoma.

Cancer Chemother Pharmacol

January 2025

Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.

Purpose: Ovarian clear cell carcinoma is a highly malignant gynecological tumor characterized by a high rate of chemotherapy resistance and poor prognosis. The PI3K/AKT/mTOR pathway is well-known to be closely related to the progression of various malignancies, and recent studies have indicated that this pathway may play a critical role in the progression and worsening of OCCC.

Methods: In this study, we investigated the combined effects of WX390, a dual inhibitor of PI3K/mTOR, and cisplatin on OCCC through both in vitro and in vivo experiments to further elucidate their therapeutic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!