Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Cu(+) pump ATP7B plays an irreplaceable role in the elimination of excess Cu(+) by the hepatocyte into the bile. The trafficking and site of action of ATP7B are subjects of controversy. One current proposal is that an increase in intracellular Cu(+) results in the translocation of ATP7B to the lysosomes and excretion of excess Cu(+) through lysosomal-mediated exocytosis at the bile canaliculus. Here, we show that ATP7B is transported from the trans-Golgi network (TGN) to the bile canaliculus by basolateral sorting and endocytosis, and microtubule-mediated transcytosis through the subapical compartment. Trafficking ATP7B is not incorporated into lysosomes, and addition of Cu(+) does not cause relocalization of lysosomes and the appearance of lysosome markers in the bile canaliculus. Our data reveal the pathway of the Cu(+)-mediated transport of ATP7B from the TGN to the bile canaliculus and indicates that the bile canaliculus is the primary site of ATP7B action in the elimination of excess Cu(.)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jcs.184663 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!