Mathematical modelling of epidemic propagation on networks is extended to hypergraphs in order to account for both the community structure and the nonlinear dependence of the infection pressure on the number of infected neighbours. The exact master equations of the propagation process are derived for an arbitrary hypergraph given by its incidence matrix. Based on these, moment closure approximation and mean-field models are introduced and compared to individual-based stochastic simulations. The simulation algorithm, developed for networks, is extended to hypergraphs. The effects of hypergraph structure and the model parameters are investigated via individual-based simulation results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11538-016-0158-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!