In recent years, microwave-induced combustion (MIC) has proved to be a robust sample preparation technique for difficult-to-digest samples containing high carbon content, especially for determination of halogens and sulfur. National Institute of Standards and Technology (NIST) has applied the MIC methodology in combination with isotope dilution analysis for sulfur determinations, representing the first-reported combination of this robust sample preparation methodology and high-accuracy quantification approach. Medium-resolution mode sector-field inductively coupled plasma mass spectrometry was invoked to avoid spectral interferences on the sulfur isotopes. The sample preparation and instrumental analysis scheme was used for the value assignment of total sulfur in Standard Reference Material (SRM) 2682c Subbituminous Coal (nominal mass fraction 0.5% sulfur). A description of the analytical procedures required is provided, along with metrological results, including an estimation of the overall method uncertainty (<1.5% relative expanded uncertainty) calculated using the IDMS measurement function and a Kragten spreadsheet approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.5b03981 | DOI Listing |
Food Chem
January 2025
Materials Research Institute and Department of Ecosystem Science and Management, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA 16802, USA. Electronic address:
This work presents a convenient and easy-to-operate method for synthesizing the functionally integrated nanocomposite of nitrogen-doped multi walled carbon nanotube networks (N-CNTs) and cobalt 2-methylimidazole (ZIF-67) nanoparticles. The N-CNTs@ZIF-67 nanocomposite was utilized to design a novel electrochemical sensing platform for detecting gallic acid (GA). The N-CNTs@ZIF-67 modified glass carbon electrode (GCE) demonstrated high sensitivity for GA electrochemical detection (LOD: 10.
View Article and Find Full Text PDFFood Chem
January 2025
Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan 430062, China; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; HuaShan Technology Company Limited, Qianjiang 433136, China. Electronic address:
Highly sensitive and portable pesticide residues detection are indispensable for safeguarding food safety and environmental health. Herein, we introduce a one-step vacuum filtration strategy for the scalable production of cobalt-based conjugated coordination polymers (CoCCPs) electrode arrays, utilizing carboxylated single-walled carbon nanotubes (c-SWNTs) as bonding bridges (CoCCPs@c-SWNTs). Due to their abundant active sites and high conductivity, the CoCCPs@c-SWNTs arrays exhibit superior electrochemical performance (e.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States; The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States; Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, United States. Electronic address:
Since physiological and pathological events change the mechanical properties of cells, tools that rapidly quantify such changes at the single-cell level can advance the utility of cell mechanics as a label-free biomarker. We demonstrate the capability to probe the population-level elastic modulus and fluidity of MDA-MB-231 cells at a throughput of up to 50 cell/second within a portable microchip. Our sensing scheme adapts a code multiplexing scheme to implement a distributed network of sensors throughout the microchip, thereby compressing all sensing events into a single electrical output.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Introduction: Biomarkers play a crucial role across various fields by providing insights into biological responses to interventions. High-throughput gene expression profiling technologies facilitate the discovery of data-driven biomarkers through extensive datasets. This study focuses on identifying biomarkers in gene expression data related to chemical injuries by mustard gas, covering a spectrum from healthy individuals to severe injuries.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Engineering and Technology, Southwest University, Chongqing 400716, PR China. Electronic address:
The detection of heavy metals in soil is of great scientific significance for food security and human health. However, traditional detection methods are complicated, time-consuming, and labor-intensive. Herein, we developed a novel method using Au@SiO nanoparticles (NPs) and surface microstructure combined with laser-induced breakdown spectroscopy (Au@SiO NPs-SMS-LIBS) for the rapid detection of lead (Pb), chromium (Cr), and copper (Cu) in soil samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!