Antibiofouling potential of quercetin compound from marine-derived actinobacterium, Streptomyces fradiae PE7 and its characterization.

Environ Sci Pollut Res Int

Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Periyar Palkalai Nagar, Salem, 636 011, Tamil Nadu, India.

Published: July 2016

An attempt has been made to isolate, purify and characterize antifouling compound from Streptomyces fradiae PE7 isolated from Vellar estuarine sediment, Parangipettai, South India. The microbial identification was done at species level based on its phenotypic, cell wall and molecular characteristics. Strain PE7 produced high quantity of antifouling compounds in agar surface fermentation when compared to submerged fermentation. In fermentation optimization, wide range of sugars, amino acids, minerals, pH, temperature and NaCl concentration was found to influence the antifouling compound production from the strain PE7. Antifouling compound PE7-C was purified from the crude extract by preparative TLC, and its activity against biofouling bacteria was confirmed by bioautography. Based on the physico-chemical characteristics, the chemical structure of the antifouling compound PE7-C was identified as quercetin (C15H10O7), a flavonoid class of compound with the molecular weight 302.23 g/mol. The purified quercetin was active against 18 biofouling bacteria with MIC range between 1.6 and 25 μg/ml, algal spore germination and mollusc foot adherence found at 100 μg/ml and 306 ± 19.6 μg ml(-1) respectively. The present study, for the first time, reported quercetin from marine-derived Streptomyces sp. PE7 with antifouling activity. This also leads to the repurposing of quercetin for the development of antifouling agent.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-016-6532-5DOI Listing

Publication Analysis

Top Keywords

antifouling compound
16
streptomyces fradiae
8
strain pe7
8
pe7 antifouling
8
compound pe7-c
8
biofouling bacteria
8
antifouling
7
compound
6
quercetin
5
antibiofouling potential
4

Similar Publications

Self-Healing Superhydrophobic Coatings with Multiphase Repellence Property.

ACS Appl Mater Interfaces

January 2025

Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.

Developing versatile, scalable, and durable coatings that repel various matters in different service environments is of great importance for engineered materials applications but remains highly challenging. Here, the mesoporous silica microspheres (HMS) fabricated by the hard template method were utilized as micro-nanocontainers to encapsulate the hydrophobic agent of perfluorooctyltriethoxysilane (F13) and the corrosion inhibitor of benzotriazole (BTA), forming the functional microsphere of F-HMS(BTA). Moreover, the synthesized organosilane-modified silica sol adhesive (SMP) and F-HMS(BTA) were further employed as the binder and functional filler to construct a superhydrophobic self-healing coating of SMP@F-HMS(BTA) on various engineering metals through scalable spraying.

View Article and Find Full Text PDF

Mix-Charged Nanofiltration Membrane for Efficient Organic Removal from High-Salinity Wastewater: The Role of Charge Spatial Distribution.

Environ Sci Technol

January 2025

State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China.

The efficient removal of organic contaminants from high-salinity wastewater is crucial for resource recovery and achieving zero discharge. Nanofiltration (NF) membranes are effective in separating organic compounds and monovalent salts, but they typically exhibit an excessive rejection of divalent salts. Modifying the charge characteristics of NF membranes can improve salt permeation; however, the role of charge spatial distribution in governing salt transport behavior is not fully understood.

View Article and Find Full Text PDF

Ovarian cancer (OC) must be detected in its early stages when the mortality rate is the lowest to provide patients with the best chance of survival. Lysophosphatidic acid (LPA) is a critical OC biomarker since its levels are elevated across all stages and increase with disease progression. This paper presents an LPA assay based on a thickness shear mode acoustic sensor with dissipation monitoring that involves a new thiol molecule 3-(2-mercaptoethanoxy)propanoic acid (HS-MEG-COOH).

View Article and Find Full Text PDF

Curcumin (CUR) is a natural compound recognized for stimulating the expression of antioxidant genes. This characteristic has been used to promote animal health and production in aquaculture settings. We hypothesized that supplementing embryos of Crassostrea gigas oysters with CUR would improve their antioxidant capacity, development, and resilience to stress.

View Article and Find Full Text PDF

Anti-biofouling marine diterpenoids from Okinawan soft corals.

Biofouling

January 2025

The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.

Article Synopsis
  • Soft corals have potential pharmaceutical applications, particularly for their antiproliferative and anti-inflammatory properties, with the Alcyoniidae family being a notable source of bioactive terpenoids.
  • Despite significant research, their effectiveness against biofouling, specifically against mussels, has not been thoroughly investigated.
  • This study successfully isolates a new diterpenoid and 15 known compounds, evaluates their chemical structures, and assesses their anti-biofouling capabilities and toxicities, highlighting the promise of these natural compounds as eco-friendly antifouling agents.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!