Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present the new promising nanostructure- sandwich-like mesoporous silica nanoflakes synthesized on graphene oxide sheets core. In the first step biocompatibility of the nanoflakes with PEG and without functionalization in human fibroblast, melanoma and breast cancer cells was assessed. In order to define the cellular uptake in vitro and biodistribution in vivo the nanostructures were labelled with fluorescent dye. In the next step, the silica nanostructures were filled by the anticancer drug- methotrexate (MTX) and cytotoxicity of the complex in reference to MTX was evaluated. The WST-1 assay shows mild, but concentration dependent, cytotoxicity of the nanoflakes, most significant for the non-functionalized structures. PEG-modified silica nanoflakes didn't produce a disruption of cell membranes and lactate dehydrogenase (LDH) release. Cell imaging revealed efficient internalization of the silica nanoflakes in cells. Ex vivo organ imaging showed high accumulation of the nanostructures in lungs, bladder and gall bladder, whereas confocal imaging revealed wide nanoflake distribution in all tested tissues, especially at 1h and 4h post intravenous injection. Cytotoxicity of the nanoflake-MTX complex in reference to MTX showed similar cytotoxic potential against cancer cells. These findings may provide useful information for designing drug delivery systems, which may improve anticancer efficacy and decrease side effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2016.03.041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!