INORGANIC CARBON ACQUISITION BY CHRYSOPHYTES(1).

J Phycol

Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UKThe Freshwater Biological Association, The Ferry Landing, Far Sawrey, Ambleside, Cumbria, LA22 0LP, UKDivision of Plant Sciences, The University of Dundee at SCRI, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UKFachbereich Biologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautner, Germany.

Published: October 2009

Twelve species, representing 12 families of the chrysophytes sensu lato, were tested for their ability to take up inorganic carbon. Using the pH-drift technique, CO2 compensation points generally varied between 1 and 20 μmol · L(-1) with a mean concentration of 5 μmol · L(-1) . Neither pH nor alkalinity affected the CO2 compensation point. The concentration of oxygen had a relatively minor effect on CO2 -uptake kinetics, and the mean CO2 compensation point calculated from the kinetic curves was 3.6 μmol · L(-1) at 10-15 kPa starting oxygen partial pressure and 3.8 μmol · L(-1) at atmospheric starting oxygen partial pressure (21 kPa). Similarly, uptake kinetics were not affected by alkalinity, and hence concentration of bicarbonate. Membrane inlet mass spectrometry (MIMS) in the presence and absence of acetazolamide suggested that external carbonic anhydrase in Dinobryon sertularia Ehrenb. and Synura petersenii Korschikov was either very low or absent. Rates of net HCO3 (-) uptake were very low (∼5% of oxygen evolution) using MIMS and decreased rather than increased with increasing HCO3 (-) concentration, suggesting that it was not a real uptake. The CO2 compensation points determined by MIMS for CO2 uptake and oxygen evolution were similar to those determined in pH-drift and were >1 μmol · L(-1) . Overall, the results suggest that chrysophytes as a group lack a carbon-concentrating mechanism (CCM), or an ability to make use of bicarbonate as an alternative source of inorganic carbon. The possible evolutionary and ecological consequences of this are briefly discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1529-8817.2009.00734.xDOI Listing

Publication Analysis

Top Keywords

co2 compensation
16
inorganic carbon
12
compensation points
8
compensation point
8
starting oxygen
8
oxygen partial
8
partial pressure
8
oxygen evolution
8
co2
6
oxygen
5

Similar Publications

Thermodynamic regulation of carbon dioxide capture by functionalized ionic liquids.

Chem Soc Rev

January 2025

Department of Chemistry, Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China.

Carbon dioxide capture has attracted worldwide attention because CO emissions cause global warming and exacerbate climate change. Ionic liquids (ILs) have good application prospects in carbon capture due to their excellent properties, which provide a new chance to develop efficient and reversible carbon capture systems. This paper reviews the recent progress in CO chemical absorption by ILs, such as N-site, O-site, C-site, and multi-site functionalized ILs.

View Article and Find Full Text PDF

For the effective removal of phenol from the environment, photocatalytic synergistic adsorption is currently one of the key methods. By leveraging the polysaccharide backbone structure of sodium alginate (SA),Zinc hydroxystannate (ZHS) was introduced into the gel structure using a co-precipitation technique. Additionally, gangue waste was repurposed through a polymerization reaction.

View Article and Find Full Text PDF

Photorespiration, often considered as a wasteful process, is a key target for bioengineering to improve crop yields. Several photorespiratory bypasses have been designed to efficiently metabolize 2-phosphoglycolate and increase the CO2 concentration in chloroplasts, thereby reducing photorespiration. However, the suppression of primary nitrate assimilation remains an issue when photorespiration is inhibited.

View Article and Find Full Text PDF

Chemical weed control is a significant agricultural concern, and reliance on a limited range of herbicide action modes has increased resistant weed species, many of which use C4 metabolism. As a result, the identification of novel herbicidal agents with low toxicity targeting C4 plants becomes imperative. An assessment was conducted on the impact of 3-cyanobenzoic acid on the growth and photosynthetic processes of maize (), a representative C4 plant, cultivated hydroponically over 14 days.

View Article and Find Full Text PDF

Engineering Lattice Dislocations of TiO Support of PdZn-ZnO Dual-Site Catalysts to Boost CO Hydrogenation to Methanol.

Angew Chem Int Ed Engl

December 2024

Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China.

CO hydrogenation to methanol using green hydrogen derived from renewable resources provides a promising method for sustainable carbon cycle but suffers from high selectivity towards byproduct CO. Here, we develop an efficient PdZn-ZnO/TiO catalyst by engineering lattice dislocation structures of TiO support. We discover that this modification orders irregularly arranged atoms in TiO to stabilize crystal lattice, and consequently weakens electronic interactions with supported active phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!