The microfabrication of microfluidic control systems and the development of increasingly sensitive molecular amplification tools have enabled the miniaturization of single cells analytical platforms. Only recently has the throughput of these platforms increased to a level at which populations can be screened at the single cell level. Techniques based upon both active and passive manipulation are now capable of discriminating between single cell phenotypes for sorting, diagnostic or prognostic applications in a variety of clinical scenarios. The introduction of multiphase microfluidics enables the segmentation of single cells into biochemically discrete picoliter environments. The combination of these techniques are enabling a class of single cell analytical platforms within great potential for data driven biomedicine, genomics and transcriptomics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4975615 | PMC |
http://dx.doi.org/10.1016/j.copbio.2016.02.015 | DOI Listing |
J Biol Phys
January 2025
Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, 100190, China.
Conventional kinesin protein is a prototypical biological molecular motor that can step processively on microtubules towards the plus end by hydrolyzing ATP molecules, performing the biological function of intracellular transports. An important characteristic of the kinesin is the load dependence of its velocity, which is usually measured by using the single molecule optical trapping method with a large-sized bead attached to the motor stalk. Puzzlingly, even for the same kinesin, some experiments showed that the velocity is nearly independent of the forward load whereas others showed that the velocity decreases evidently with the increase in the magnitude of the forward load.
View Article and Find Full Text PDFApoptosis
January 2025
Department of Breast Cancer Surgery, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, Jiangxi, 330029, China.
Breast cancer remains one of the leading causes of cancer-related mortality among women worldwide. Immunotherapy, a promising therapeutic approach, often faces challenges due to the immunosuppressive tumor microenvironment. This study explores the innovative use of CRISPR-Cas9 technology in conjunction with FCPCV nanoparticles to target and edit the C-C Motif Chemokine Ligand 5 (CCL5) gene, aiming to improve the efficacy of breast cancer immunotherapy.
View Article and Find Full Text PDFBiochem Genet
January 2025
Department of Rheumatology and Immunology, Jingmen People's Hospital, JingChu University of Technology Affiliated Jingmen People's Hospital, No.39 Xiangshan Road Dongbao Zone, Jingmen, 448000, China.
Breast invasive carcinoma (BRCA) affects women worldwide, and despite advancements in diagnosis, prevention, and treatment, outcomes remain suboptimal. TNIP1, a novel target involved in multiple immune signaling pathways, influences tumor development and survival. However, the connection between BRCA and TNIP1 remains unclear.
View Article and Find Full Text PDFSci Rep
January 2025
School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice.
View Article and Find Full Text PDFAnn Hematol
January 2025
Department of Obstetrics and Gynecology, The Helen Schneider Hospital for Women, Rabin Medical Center, Petach-Tikva, Israel.
Chronic Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (HSCT), affecting the female genital tract in 25-66% of the patients. This condition, referred to as Genital GVHD is an underdiagnosed gynecologic comorbidity, that can significantly impair quality of life. We aimed to describe the prevalence and management of genital GVHD following HSCT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!