DNA origami provides rapid access to easily functionalized, nanometer-sized structures making it an intriguing platform for the development of defined drug delivery and sensor systems. Low cellular uptake of DNA nanostructures is a major obstacle in the development of DNA-based delivery platforms. Herein, significant strong increase in cellular uptake in an established cancer cell line by modifying a planar DNA origami structure with the iron transport protein transferrin (Tf) is demonstrated. A variable number of Tf molecules are coupled to the origami structure using a DNA-directed, site-selective labeling technique to retain ligand functionality. A combination of confocal fluorescence microscopy and quantitative (qPCR) techniques shows up to 22-fold increased cytoplasmic uptake compared to unmodified structures and with an efficiency that correlates to the number of transferrin molecules on the origami surface.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201503934DOI Listing

Publication Analysis

Top Keywords

dna origami
12
origami structure
12
planar dna
8
cellular uptake
8
origami
5
intracellular delivery
4
delivery planar
4
dna
4
structure transferrin-receptor
4
transferrin-receptor internalization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!