Nitric oxide (NO), identified over the last several decades in many physiological processes and pathways as both a beneficial and detrimental signaling molecule, has been the subject of extensive research. Physiologically, NO is transported by a class of donors known as S-nitrosothiols. Both endogenous and synthetic S-nitrosothiols have been reported to release NO during interactions with certain transition metals, primarily Cu(2+) and Fe(2+). Ag(+) and Hg(2+) have also been identified, although these metals are not abundantly present in physiological systems. Here, we evaluate Pt(2+), Fe(2+), Fe(3+), Mg(2+), Zn(2+), Mn(2+), Co(2+), Ni(2+), and Cu(2+) for their ability to generate NO from S-nitroso-N-acetyl-d-penicillamine (SNAP) under physiological pH conditions. Specifically, we report NO generation from RSNOs initiated by three transition metal ions; Co(2+), Ni(2+), and Zn(2+), which have not been previously reported to generate NO. Additionally, preliminary in vivo evidence of zinc wires implanted in the rat arterial wall and circulating blood is presented which demonstrated inhibited thrombus formation after 6 months. One potentially useful application of these metal ions capable of generating NO from RSNOs is their use in the fabrication of biodegradable metallic stents capable of generating NO at the stent-blood interface, thereby reducing stent-related thrombosis and restenosis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b00145DOI Listing

Publication Analysis

Top Keywords

nitric oxide
8
s-nitroso-n-acetyl-d-penicillamine snap
8
co2+ ni2+
8
metal ions
8
capable generating
8
transition-metal-mediated release
4
release nitric
4
oxide s-nitroso-n-acetyl-d-penicillamine
4
snap potential
4
potential applications
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!