Recruitment of CD16(+) monocytes to endothelial cells in response to LPS-treatment and concomitant TNF release is regulated by CX3CR1 and interfered by soluble fractalkine.

Cytokine

Center for Sepsis Control and Care, University Hospital Jena, Erlanger Allee 101, 07747 Jena, Germany; Institute of Biochemistry II, Jena University Hospital Jena, Nonnenplan 2-4, 07743 Jena, Germany. Electronic address:

Published: July 2016

Fractalkine (FKN, CX3CL1) is a regulator of leukocyte recruitment and adhesion, and controls leukocyte migration on endothelial cells (ECs). We show that FKN triggers different effects in CD16(+) and CD16(-) monocytes, the two major subsets of human monocytes. In the presence of ECs a lipopolysaccharide (LPS)-stimulus led to a significant increase in tumor necrosis factor (TNF)-secretion by CD16(+) monocytes, which depends on the interaction of CX3CR1 expressed on CD16(+) monocytes with endothelial FKN. Soluble FKN that was efficiently shed from the surface of LPS-activated ECs in response to binding of CD16(+) monocytes to ECs, diminished monocyte adhesion in down-regulating CX3CR1 expression on the surface of CD16(+) monocytes resulting in decreased TNF-secretion. In this process the TNF-converting enzyme (TACE) acts as a central player regulating FKN-shedding and TNFα-release through CD16(+) monocytes interacting with ECs. Thus, the release and local accumulation of sFKN represents a mechanism that limits the inflammatory potential of CD16(+) monocytes by impairing their interaction with ECs during the initial phase of an immune response to LPS. This regulatory process represents a potential target for therapeutic approaches to modulate the inflammatory response to bacterial components.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cyto.2016.03.017DOI Listing

Publication Analysis

Top Keywords

cd16+ monocytes
28
monocytes
9
monocytes endothelial
8
endothelial cells
8
cd16+
7
ecs
6
recruitment cd16+
4
response
4
cells response
4
response lps-treatment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!