Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16) and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx) into the genomic background of the spontaneously hypertensive rat (SHR) strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18-28 mmHg difference) and diastolic (10-15 mmHg difference) blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001). The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes) are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1). Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic syndrome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816345 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152708 | PLOS |
Arq Bras Cir Dig
January 2025
Universidade de São Paulo, Faculty of Medicine, Department of Gastroenterology - São Paulo (SP), Brazil.
Background: Obesity is a predisposing factor for serious comorbidities, particularly those related to elevated cardiovascular mortality. The atherogenic index of plasma (AIP) has been shown to be a useful indicator of patients with insulin resistance.
Aims: The aim of this study was to assess cardiovascular risk before and after surgical treatment of obesity.
Hepatol Commun
February 2025
Department of Biostatistics & Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Background: Alcohol-associated hepatitis (AH) leads to high rates of mortality and health care costs. Understanding the immediate costs after an AH diagnosis and identifying key cost factors is crucial for health care policies and clinical decisions.
Objectives: This study quantifies medical costs within 30 days of an AH diagnosis across outpatient (OP), emergency department (ED), and inpatient (IP) settings.
Curr Alzheimer Res
January 2025
Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
Extracellular vesicles (EVs) are nano-sized membranous particles that are secreted by various cell types and play a critical role in intercellular communication. Their unique properties and remarkable ability to deliver bioactive cargo to target cells have made them promising tools in the treatment of various diseases, including Alzheimer's disease (AD). AD is a devastating neurodegenerative disease characterized by progressive cognitive decline and neuropathological hallmarks, such as amyloid-beta plaques and neurofibrillary tangles.
View Article and Find Full Text PDFBurns Trauma
January 2025
Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China.
Background: Non-thyroidal illness syndrome is commonly observed in critically ill patients, characterized by the inactivation of systemic thyroid hormones (TH), which aggravates metabolic dysfunction. Recent evidence indicates that enhanced TH inactivation is mediated by the reactivation of type 3 deiodinase (Dio3) at the tissue level, culminating in a perturbed local metabolic equilibrium. This study assessed whether targeted inhibition of Dio3 can maintain tissue metabolic homeostasis under septic conditions and explored the mechanism behind Dio3 reactivation.
View Article and Find Full Text PDFFront Physiol
January 2025
College of Dental Medicine, Lincoln Memorial University, Harrogate, TN, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!