Purpose Of Review: The interplay between lipids and epigenetic mechanisms has recently gained increased interest because of its relevance for common diseases and most notably atherosclerosis. This review discusses recent advances in unravelling this interplay with a particular focus on promising approaches and methods that will be able to establish causal relationships.
Recent Findings: Complementary approaches uncovered close links between circulating lipids and epigenetic mechanisms at multiple levels. A characterization of lipid-associated genetic variants suggests that these variants exert their influence on lipid levels through epigenetic changes in the liver. Moreover, exposure of monocytes to lipids persistently alters their epigenetic makeup resulting in more proinflammatory cells. Hence, epigenetic changes can both impact on and be induced by lipids.
Summary: It is the combined application of technological advances to probe epigenetic modifications at a genome-wide scale and methodological advances aimed at causal inference (including Mendelian randomization and integrative genomics) that will elucidate the interplay between circulating lipids and epigenetics. Understanding its role in the development of atherosclerosis holds the promise of identifying a new category of therapeutic targets, since epigenetic changes are amenable to reversal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MOL.0000000000000301 | DOI Listing |
Medulloblastoma (MB) is the most prevalent malignant brain tumor in children, exhibiting clinical and genomic heterogeneity. Of the four major subgroups, Group 3 tumors (MYC-MB), display high levels of MYC and metastasis rates. Despite treatment with surgery, radiation, and chemotherapy, patients with Group 3 MB are more likely to develop aggressive recurrent tumors with poor survival.
View Article and Find Full Text PDFClin Rheumatol
December 2024
Department of Medicine, University of Otago, Wellington, New Zealand.
Climate change and pollution are a major existential threat. Healthcare contributes a noteworthy 4-6% to the total carbon footprint and 5-7% of the total greenhouse gas (GHG) emissions. Environmental pollution and modern lifestyles are also contributing to the increased prevalence of autoimmune and lifestyle-related rheumatic disease.
View Article and Find Full Text PDFJ Dairy Sci
December 2024
Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA.
Demands for animal products are projected to increase in the future, and animal production is key to agricultural sustainability and food security; consequently, enhancing ruminant livestock production efficiencies in sustainable ways is a major goal for the livestock industry. Developmental programming is the concept that various stressors, including compromised maternal nutrition during critical developmental windows will result in both short- and long-term changes in the offspring. Ruminant models of developmental programming indicate that compromised maternal nutrition, including global under and over-nutrition, macronutrients, and specific micronutrients, including amino acids (Met and Arg), vitamins (folate, B, and choline), and minerals (sulfur, cobalt, and selenium) can alter offspring outcomes.
View Article and Find Full Text PDFClin Epigenetics
December 2024
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
Background: Pancreatic adenocarcinoma (PDAC) exhibits a complex microenvironment with diverse cell populations influencing patient prognosis. Single-cell RNA sequencing (scRNA-seq) was used to identify prognosis-related cell types, and DNA methylation (DNAm)-based models were developed to predict outcomes based on their cellular characteristics.
Methods: We integrated scRNA-seq, bulk data, and clinical information to identify key cell populations associated with prognosis.
Atherosclerosis
December 2024
Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart and Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK. Electronic address:
Vascular smooth muscle cells (VSMCs) in adult arteries maintain substantial phenotypic plasticity, which allows for the reversible cell state changes that enable vascular remodelling and homeostasis. In atherosclerosis, VSMCs dedifferentiate in response to lipid accumulation and inflammation, resulting in loss of their characteristic contractile state. Recent studies showed that individual, pre-existing VSMCs expand clonally and can acquire many different phenotypes in atherosclerotic lesions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!