Background: Octopoda utilise their arms for a diverse range of functions, including locomotion, hunting, defence, exploration, reproduction, and grooming. However the natural environment contains numerous threats to the integrity of arms, including predators and prey during capture. Impressively, octopoda are able to close open wounds in an aquatic environment and can fully regenerate arms. The regrowth phase of cephalopod arm regeneration has been grossly described; however, there is little information about the acute local response that occurs following an amputation injury comparable to that which frequently occurs in the wild.
Methods: Adult Octopus vulgaris caught in the Bay of Naples were anaesthetised, the distal 10 % of an arm was surgically amputated, and wounded tissue was harvested from animals sacrificed at 2, 6, and 24 h post-amputation. The extent of wound closure was quantified, and the cell and tissue dynamics were observed histologically, by electron microscopy, as well as using ultrasound.
Results: Macroscopic, ultrasonic and ultrastructural analyses showed extensive and significant contraction of the wound margins from the earliest time-point, evidenced by tissue puckering. By 6 h post amputation, the wound was 64.0 ± 17.2 % closed compared to 0 h wound area. Wound edge epithelial cells were also seen to be migrating over the wound bed, thus contributing to tissue repair. Temporary protection of the exposed tip in the form of a cellular, non-mucus plug was observed, and cell death was apparent within two hours of injury. At earlier time-points this was apparent in the skin and deeper muscle layers, but ultimately extended to the nerve cord by 24 h.
Conclusions: This work has revealed that O. vulgaris ecologically relevant amputation wounds are rapidly repaired via numerous mechanisms that are evolutionarily conserved. The findings provide insights into the early processes of repair preparatory to regeneration. The presence of epithelial, chromatophore, vascular, muscle and neural tissue in the arms makes this a particularly interesting system in which to study acute responses to injury and subsequent regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4812652 | PMC |
http://dx.doi.org/10.1186/s40851-016-0044-5 | DOI Listing |
JAMA
January 2025
Worcestershire Royal Hospital, Worcester, United Kingdom.
Importance: Patients undergoing unplanned abdominal surgical procedures are at increased risk of surgical site infection (SSI). It is not known if incisional negative pressure wound therapy (iNPWT) can reduce SSI rates in this setting.
Objective: To evaluate the effectiveness of iNPWT in reducing the rate of SSI in adults undergoing emergency laparotomy with primary skin closure.
J Mater Sci Mater Med
January 2025
Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.
Human hair keratin, a natural protein derived from human hair, has emerged prominently in the field of wound repair, showcasing its unique regenerative capabilities and extensive application potential. However, it is a challenge for the keratin to efficiently therapy the impaired wound healing, such as combined radiation-wound injury. Here, we report a keratin/chitosan (KRT/CS) film for skin repair of chronic wounds in in rats with combined radiation-wound injury.
View Article and Find Full Text PDFNanoscale
January 2025
Analytical & Testing Center; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610064, China.
Continuous microenvironment modulation is an ongoing challenge in wound dressing, which includes excessive exudate absorption, oxygen delivery, bacterial inhibition and angiogenesis. Herein, we developed an construction strategy to fabricate a self-retaining double-layered wound dressing, where the top layer precursor was composed of Ca-containing polyvinyl butyral (PVB) solution dispersed with hydroxypropyl methylcellulose (HPMC) particles, and the bottom one consisted of sodium alginate (Alg) solution blended with Ag-doped mesoporous bioactive glass powders (Ag-MBG). When in use, both precursors were simultaneously squeezed out from the twin nozzles connected to the individual chambers of a twin-chambered syringe, whereby Ca in the top layer rapidly migrated downwards to crosslink Alg in the bottom layer, leading to the formation of an Alg/Ag-MBG (AA) functional hydrogel for filling an irregular wound.
View Article and Find Full Text PDFJ Periodontal Res
January 2025
Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy.
Aim: To test a BiO-Optimizing Site Targeted (BOOST) approach to periodontal regeneration by the adjunctive use of locally delivered doxycycline (DOX) 2 weeks prior to minimally invasive surgery in terms of clinical and radiographic outcomes at 1 year.
Methods: For this randomized clinical trial, stage III/IV periodontitis patients presenting sites with intrabony defects and bleeding on probing (BoP+) after steps 1-2 of periodontal treatment were included. Sites were treated via subgingival instrumentation with or without a BOOST approach by local DOX.
Cytotechnology
April 2025
Medical Aesthetics Teaching and Research Office, Rehabilitation and Health Department, Anhui College of Traditional Chinese Medicine, No.18 Wuxia mountain West Road, Wuhu, 241002 Anhui China.
Burn injuries are complex, life-threatening events involving intricate cellular and molecular processes, including angiogenesis, which is vital for effective wound healing. polysaccharide (BSP), a bioactive compound from , exhibits anti-inflammatory and wound-healing properties. However, its impact on angiogenesis modulation, particularly through the synaptopodin-2-like (SCEL) gene, remains poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!