Bacteriophages play an important role in host-driven biological processes by controlling bacterial population size, horizontally transferring genes between hosts and expressing host-derived genes to alter host metabolism. Metagenomics provides the genetic basis for understanding the interplay between uncultured bacteria, their phage and the environment. In particular, viral metagenomes (viromes) are providing new insight into phage-encoded host genes (i.e. auxiliary metabolic genes; AMGs) that reprogram host metabolism during infection. Yet, despite deep sequencing efforts of viral communities, the majority of sequences have no match to known proteins. Reference-independent computational techniques, such as protein clustering, contig spectra and ecological profiling are overcoming these barriers to examine both the known and unknown components of viromes. As the field of viral metagenomics progresses, a critical assessment of tools is required as the majority of algorithms have been developed for analyzing bacteria. The aim of this paper is to offer an overview of current computational methodologies for virome analysis and to provide an example of reference-independent approaches using human skin viromes. Additionally, we present methods to carefully validate AMGs from host contamination. Despite computational challenges, these new methods offer novel insights into the diversity and functional roles of phages in diverse environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsle/fnw077 | DOI Listing |
ACS Infect Dis
January 2025
Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
The complete tricarboxylic acid (TCA) cycle, comprising a series of 8 oxidative reactions, occurs in most eukaryotes in the mitochondria and in many prokaryotes. The net outcome of these 8 chemical reactions is the release of the reduced electron carriers NADH and FADH, water, and carbon dioxide. The parasites of the .
View Article and Find Full Text PDFACS Nano
January 2025
Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
Nonantibiotic strategies are urgently needed to treat acute drug-resistant bacterial pneumonia. Recently, nanomaterial-mediated bacterial cuproptosis has arisen widespread interest due to its superiority against antibiotic resistance. However, it may also cause indiscriminate and irreversible damage to healthy cells.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Department of Nematology, University of California Riverside, Riverside, CA, USA.
Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Department Plant Protection Biology, SLU Alnarp, Lomma, Sweden.
The great diversity of specialist plant-feeding insects suggests that host plant shifts may initiate speciation, even without geographic barriers. Pheromones and kairomones mediate sexual communication and host choice, and the response to these behaviour-modifying chemicals is under sexual and natural selection, respectively. The concept that the interaction of mate signals and habitat cues facilitates reproductive isolation and ecological speciation is well established, while the traits and the underlying sensory mechanisms remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!