Dengue fever is caused by any of the four known dengue virus serotypes (DENV1 to DENV4) that affect millions of people worldwide, causing a significant number of deaths. There are vaccines based on chimeric viruses, but they still are not in clinical use. Anti-DENV vaccine strategies based on nonstructural proteins are promising alternatives to those based on whole virus or structural proteins. The DENV nonstructural protein 5 (NS5) is the main target of anti-DENV T cell-based immune responses in humans. In this study, we purified a soluble recombinant form of DENV2 NS5 expressed in Escherichia coli at large amounts and high purity after optimization of expression conditions and purification steps. The purified DENV2 NS5 was recognized by serum from DENV1-, DENV2-, DENV3-, or DENV4-infected patients in an epitope-conformation-dependent manner. In addition, immunization of BALB/c mice with NS5 induced high levels of NS5-specific antibodies and expansion of gamma interferon- and tumor necrosis factor alpha-producing T cells. Moreover, mice immunized with purified NS5 were partially protected from lethal challenges with the DENV2 NGC strain and with a clinical isolate (JHA1). These results indicate that the recombinant NS5 protein preserves immunological determinants of the native protein and is a promising vaccine antigen capable of inducing protective immune responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4895003 | PMC |
http://dx.doi.org/10.1128/CVI.00081-16 | DOI Listing |
Mol Biol Rep
January 2025
Department of Internal Medicine, School of Medicine, Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran.
Dengue virus (DENV) poses a considerable threat to public health on a global scale, since about two-thirds of the world's population is currently at risk of contracting this arbovirus. Being transmitted by mosquitoes, this virus is associated with a range of illnesses and a small percentage of infected individuals might suffer from severe vascular leakage. This leakage leads to hypovolemic shock syndrome, generally known as dengue shock syndrome, organ failure, and bleeding complications.
View Article and Find Full Text PDFRev Med Virol
January 2025
Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China.
Arboviruses currently are regarded as a major worldwide public health concern. The clinical outcomes associated with this group of viruses may vary from asymptomatic infections to severe forms of haemorrhagic fever characterised by bleeding disorders. Similar to other systemic viral infections, arboviruses can either directly or indirectly affect different parts of the body, such as the urogenital system.
View Article and Find Full Text PDFTaiwan J Ophthalmol
January 2024
Asociados de Macula, Vitreo y Retina de Costa Rica, Primer Piso Torre Mercedes Paseo Colon, San Jose, Costa Rica.
Dengue is the most common arboviral disease. It is typically spread by the bite of an infected female or mosquitoes. Dengue is endemic in subtropical and tropical regions, but its geographic reach keeps expanding.
View Article and Find Full Text PDFEur J Public Health
January 2025
Department of Community Health, Amref International University, Nairobi, Kenya.
The Chikungunya virus (CHIKV) presents substantial public health challenges in the Eastern Mediterranean Region (EMR), with its prevalence and interaction with other arboviruses (ABVs) remaining poorly understood. This systematic review and meta-analysis aimed to assess the prevalence of CHIKV and its association with other ABVs, such as dengue virus (DENV), Rift Valley fever virus (RVFV), malaria, and yellow fever virus (YFV), in the EMR. We systematically searched databases including PubMed, Embase, Web of Science, Scopus, Cochrane Library, CINAHL, PsycINFO, and ScienceDirect to identify epidemiological studies that report CHIKV prevalence and provide odds ratios (ORs) for CHIKV compared to other ABVs.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Faculty of Medicine, Center for Zoonotic and Emerging Diseases HUMRC, Universitas Hasanuddin, Makassar, Indonesia.
Background: The burden of Aedes aegypti-transmitted viruses such as dengue, chikungunya, and Zika are increasing globally, fueled by urbanization and climate change, with some of the highest current rates of transmission in Asia. Local factors in the built environment have the potential to exacerbate or mitigate transmission.
Methods: In 24 informal urban settlements in Makassar, Indonesia and Suva, Fiji, we tested children under 5 years old for evidence of prior infection with dengue, chikungunya, and Zika viruses by IgG serology.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!