Reparameterizations of the χ Torsion and Lennard-Jones σ Parameters Improve the Conformational Characteristics of Modified Uridines.

J Comput Chem

Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 APC Road, Kolkata, West Bengal, 700009, India.

Published: June 2016

Unlabelled: The currently available force field parameters for modified RNA residues in AMBER show significant deviations in conformational properties from experimental observations. The examination of the transferability of the recently revised torsion parameters revealed that there was an overall improvement in the conformational properties for some of the modifications but the improvements were still insufficient in describing the sugar pucker preferences (J. Chem. Inf.

Model: 2014, 54, 1129-1142). Here, we report an approach for the development and fine tuning of the AMBER force field parameters for 2-thiouridine, 4-thiouridine, and pseudouridine with diverse conformational preferences. The χ torsion parameters were reparameterized at the individual nucleoside level. The effect of combining the revised γ torsion parameter and modifying the Lennard-Jones σ parameters were also tested by directly comparing the conformational preferences obtained from our extensive molecular dynamics simulations with those from experimental observations. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.24374DOI Listing

Publication Analysis

Top Keywords

lennard-jones parameters
8
force field
8
field parameters
8
conformational properties
8
experimental observations
8
revised torsion
8
torsion parameters
8
conformational preferences
8
parameters
6
conformational
5

Similar Publications

Association Kinetics for Perfluorinated -Alkyl Radicals.

J Phys Chem A

December 2024

Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.

Radical-radical reaction channels are important in the pyrolysis and oxidation chemistry of perfluoroalkyl substances (PFAS). In particular, unimolecular dissociation reactions within unbranched -perfluoroalkyl chains, and their corresponding reverse barrierless association reactions, are expected to be significant contributors to the gas-phase thermal decomposition of families of species such as perfluorinated carboxylic acids and perfluorinated sulfonic acids. Unfortunately, experimental data for these reactions are scarce and uncertain.

View Article and Find Full Text PDF

Metaparticles: Computationally engineered nanomaterials with tunable and responsive properties.

J Chem Phys

December 2024

Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.

In simulations, particles are traditionally treated as rigid platforms with variable sizes, shapes, and interaction parameters. While this representation is applicable for rigid core platforms, particles consisting of soft platforms (e.g.

View Article and Find Full Text PDF

On the compatibility of the Madrid-2019 force field for electrolytes with the TIP4P/Ice water model.

J Chem Phys

December 2024

Dpto. Química Física I, Fac. Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.

The Madrid-2019 force field was recently developed to perform simulations of electrolytes in water. The model was specifically parameterized for TIP4P/2005 water and uses scaled charges for the ions. In this work, we test the compatibility of the Madrid-2019 force field with another water model: TIP4P/Ice.

View Article and Find Full Text PDF

Quasicrystals are unique materials characterized by long-range order without periodicity. They are observed in systems such as metallic alloys, soft matter, and particle simulations. Unlike periodic crystals, which are invariant under real-space symmetry operations, quasicrystals possess symmetry that requires description by a space group in reciprocal space.

View Article and Find Full Text PDF

Balancing Group 1 Monoatomic Ion-Polar Compound Interactions in the Polarizable Drude Force Field: Application in Protein and Nucleic Acid Systems.

J Phys Chem B

December 2024

University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States.

An accurate force field (FF) is the foundation of reliable results from molecular dynamics (MD) simulations. In our recently published work, we developed a protocol to generate atom pair-specific Lennard-Jones (known as NBFIX in CHARMM) and through-space Thole dipole screening (NBTHOLE) parameters in the context of the Drude polarizable FF based on readily accessible quantum mechanical (QM) data to fit condensed phase experimental thermodynamic benchmarks, including the osmotic pressure, diffusion coefficient, ionic conductivity, and solvation free energy, when available. In the present work, the developed protocol is applied to generate NBFIX and NBTHOLE parameters for interactions between monatomic ions (specifically Li, Na, K, Rb, Cs, and Cl) and common functional groups found in proteins and nucleic acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!