Neuronal nitric-oxide synthase, unlike its endothelial and inducible counterparts, displays a PDZ (PSD-95/Dlg/ZO-1) domain located at its N terminus involved in subcellular targeting. The C termini of various cellular proteins insert within the binding groove of this PDZ domain and determine the subcellular distribution of neuronal NOS (nNOS). The molecular mechanisms underlying these interactions are poorly understood because the PDZ domain of nNOS can apparently exhibit class I, class II, and class III binding specificity. In addition, it has been recently suggested that the PDZ domain of nNOS binds with very low affinity to the C termini of target proteins, and a necessary simultaneous lateral interaction must take place for binding to occur. We describe herein that the PDZ domain of nNOS can behave as a bona fide class III PDZ domain and bind to C-terminal sequences with acidic residues at the P-2 position with low micromolar binding constants. Binding to C-terminal sequences with a hydrophobic residue at the P-2 position plus an acidic residue at the P-3 position (class II) can also occur, although interactions involving residues extending up to the P-7 position mediate this type of binding. This promiscuous behavior also extends to its association to class I sequences, which must display a Glu residue at P-3 and a Thr residue at P-2 By means of site-directed mutagenesis and NMR spectroscopy, we have been able to identify the residues involved in each specific type of binding and rationalize the mechanisms used to recognize binding partners. Finally, we have analyzed the high affinity association of the PDZ domain of nNOS to claudin-3 and claudin-14, two tight junction tetraspan membrane proteins that are essential components of the paracellular barrier.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4882429PMC
http://dx.doi.org/10.1074/jbc.M116.724427DOI Listing

Publication Analysis

Top Keywords

pdz domain
28
domain nnos
16
binding
9
binding specificity
8
pdz
8
domain
8
neuronal nitric-oxide
8
nitric-oxide synthase
8
tight junction
8
class class
8

Similar Publications

Unlabelled: SYNGAP1 is a key Ras-GAP protein enriched at excitatory synapses, with mutations causing intellectual disability and epilepsy in humans. Recent studies have revealed that in addition to its role as a negative regulator of G-protein signaling through its GAP enzymatic activity, SYNGAP1 plays an important structural role through its interaction with post-synaptic density proteins. Here, we reveal that intrinsic excitability deficits and seizure phenotypes in heterozygous Syngap1 knockout (KO) mice are differentially dependent on Syngap1 GAP activity.

View Article and Find Full Text PDF

The oncogenes yes-associated protein () and transcriptional coactivator with PDZ-binding motif () are potent liver oncogenes. Because gene mutations cannot fully explain their nuclear enrichment, we aim to understand which mechanisms cause activation in liver cancer cells. The combination of proteomics and functional screening identified numerous apical cell polarity complex proteins interacting with YAP and TAZ.

View Article and Find Full Text PDF

Noncanonical role of Golgi-associated macrophage TAZ in chronic inflammation and tumorigenesis.

Sci Adv

January 2025

Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.

Until now, Hippo pathway-mediated nucleocytoplasmic translocation has been considered the primary mechanism by which yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) transcriptional coactivators regulate cell proliferation and differentiation via transcriptional enhanced associate domain (TEAD)-mediated target gene expression. In this study, however, we found that TAZ, but not YAP, is associated with the Golgi apparatus in macrophages activated via Toll-like receptor ligands during the resolution phase of inflammation. Golgi-associated TAZ enhanced vesicle trafficking and secretion of proinflammatory cytokines in M1 macrophage independent of the Hippo pathway.

View Article and Find Full Text PDF

Enhanced sampling of protein conformational changes via true reaction coordinates from energy relaxation.

Nat Commun

January 2025

Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, 851 South Morgan Street, Chicago, IL, 60607, USA.

The bottleneck in enhanced sampling lies in finding collective variables that effectively accelerate protein conformational changes; true reaction coordinates that accurately predict the committor are the well-recognized optimal choice. However, identifying them requires unbiased natural reactive trajectories, which, paradoxically, require effective enhanced sampling. Using the generalized work functional method, we uncover that true reaction coordinates control both conformational changes and energy relaxation, enabling us to compute them from energy relaxation simulations.

View Article and Find Full Text PDF

Cancer cell overexpresses numerus proteins, however, how these up-regulated proteins, especially those enzymatically opposite kinases and phosphatases, act together to promote oncogenesis is unknown. Here, we reported that protein tyrosine phosphatase H1 (PTPH1) is a scaffold protein for receptor tyrosine kinase (HER2) to potentiate breast tumorigenesis. PTPH1 utilizes its PDZ domain to bind HER2, p38γ, PBK, and YAP1 and to increase HER2 nuclear translocation, stemness, and oncogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!