Despite advances in the treatment of glioblastoma (GBM), median survival is 12-15 months. O6-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation status is acknowledged as a predictive marker for temozolomide (TMZ) treatment. When MGMT promoter values fall into a "methylated" range, a better response to chemotherapy is expected. However, a cutoff that discriminates between "methylated" and "unmethylated" status has yet to be defined. We aimed to identify the best cutoff value and to find out whether variability in methylation profiles influences the predictive capacity of MGMT promoter methylation. Data from 105 GBM patients treated between 2008 and 2013 were analyzed. MGMT promoter methylation status was determined by analyzing 10 CpG islands by pyrosequencing. Patients were treated with radiotherapy followed by TMZ. MGMT promoter methylation status was classified into unmethylated 0-9 %, methylated 10-29 % and methylated 30-100 %. Statistical analysis showed that an assumed methylation cutoff of 9 % led to an overestimation of responders. All patients in the 10-29 % methylation group relapsed before the 18-month evaluation. Patients with a methylation status ≥30 % showed a median overall survival of 25.2 months compared to 15.2 months in all other patients, confirming this value as the best methylation cutoff. Despite wide variability among individual profiles, single CpG island analysis did not reveal any correlation between single CpG island methylation values and relapse or death. Specific CpG island methylation status did not influence the predictive value of MGMT. The predictive role of MGMT promoter methylation was maintained only with a cutoff value ≥30 %.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11060-016-2116-y | DOI Listing |
Cancer Genet
January 2025
Biology and Medical Research Unit, CNESTEN, Rabat, Morocco.
The transcription factor TWIST1 is a major regulator of Epithelial-Mesenchymal Transition, enhancing cancer cell mobility and invasive potential. Overexpression of TWIST1 is associated with tumor progression and poor prognosis. In our study, we explored the role of TWIST1 as both a prognostic biomarker and a therapeutic target in bladder cancer (BC), as well as the relationship between its promoter methylation and mRNA expression in bladder cancer patients.
View Article and Find Full Text PDFJ Exp Bot
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China.
Flowering, a pivotal plant lifecycle event, is intricately regulated by environmental and endogenous signals via genetic and epigenetic mechanisms. Photoperiod is a crucial environmental cue that induces flowering by activating integrators through genetic and epigenetic pathways. However, the specific role of DNA methylation, a conserved epigenetic marker, in photoperiodic flowering remains unclear.
View Article and Find Full Text PDFHortic Res
January 2025
College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China.
DNA methylation is a stable epigenetic mark that plays a crucial role in plant life processes. However, the specific functions of DNA methylation in grape berry development remain largely unknown. In this study, we performed whole-genome bisulfite sequencing on 'Kyoho' grape and its early-ripening bud mutant 'Fengzao' at different developmental stages.
View Article and Find Full Text PDFEndocrinology
January 2025
Neuroendocrinology Department, ICMR-National Institute for Research in Reproductive and Child Health, J. M. Street, Parel, Mumbai 400012, India.
Estrogen through its receptors, ERα and ERβ, regulate various aspects of spermatogenesis and male fertility. Since the sperm epigenome is an important contributing factor to male fertility, we evaluated the effects of estrogen signaling activation through the ERs on sperm DNA methylome in adult rats. Whole genome-bisulfite sequencing (WGBS) in caudal sperm DNA was performed.
View Article and Find Full Text PDFJ Adv Res
January 2025
Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China; Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China. Electronic address:
Introduction: Tumor suppressor gene (TSG) inactivation by epigenetic modifications contributes to the carcinogenesis and progression of colorectal cancer (CRC). Expression profiling and CpG methylomics revealed that a forkhead-box transcriptional factor, FOXS1, is downregulated and methylated in CRC.
Objectives: To assess the biological functions and underlying mechanisms of FOXS1 in colorectal cancer.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!