There are still unmet medical needs for the treatment of glioblastoma (GBM), the most frequent and aggressive brain tumor worldwide. EGFRvIII, overexpressed in approximately 30% of GBM, has been regarded as a potential therapeutic target. In this study, we demonstrated that CH12, an anti-EGFRvIII monoclonal antibody, could significantly suppress the growth of EGFRvIII+ GBM in vivo; however, PTEN deficiency in GBM reduced the efficacy of CH12 by attenuating its effect on PI3K/AKT/mTOR pathway. To overcome this problem, CH12 was combined with the mTOR inhibitor rapamycin, leading to a synergistic inhibitory effect on EGFRvIII+PTEN- GBM in vivo. Mechanistically, the synergistic antitumor effect was achieved via attenuating EGFR and PI3K/AKT/mTOR pathway more effectively and reversing the STAT5 activation caused by rapamycin treatment. Moreover, the combination therapy suppressed angiogenesis and induced cancer cell apoptosis more efficiently. Together, these results indicated that CH12 and rapamycin could synergistically suppress the growth of EGFRvIII+PTEN- GBM, which might have a potential clinical application in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029739 | PMC |
http://dx.doi.org/10.18632/oncotarget.8407 | DOI Listing |
Oncotarget
April 2016
State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
There are still unmet medical needs for the treatment of glioblastoma (GBM), the most frequent and aggressive brain tumor worldwide. EGFRvIII, overexpressed in approximately 30% of GBM, has been regarded as a potential therapeutic target. In this study, we demonstrated that CH12, an anti-EGFRvIII monoclonal antibody, could significantly suppress the growth of EGFRvIII+ GBM in vivo; however, PTEN deficiency in GBM reduced the efficacy of CH12 by attenuating its effect on PI3K/AKT/mTOR pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!