A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An investigation of the interactions of Eu³⁺ and Am³⁺ with uranyl minerals: implications for the storage of spent nuclear fuel. | LitMetric

The reaction of a number of uranyl minerals of the (oxy)hydroxide, phosphate and carbonate types with Eu(iii), as a surrogate for Am(iii), have been investigated. A photoluminescence study shows that Eu(iii) can interact with the uranyl minerals Ca[(UO2)6(O)4(OH)6]·8H2O (becquerelite) and A[UO2(CO3)3]·xH2O (A/x = K3Na/1, grimselite; CaNa2/6, andersonite; and Ca2/11, liebigite). For the minerals [(UO2)8(O)2(OH)12]·12H2O (schoepite), K2[(UO2)6(O)4(OH)6]·7H2O (compreignacite), A[(UO2)2(PO4)2]·8H2O (A = Ca, meta-autunite; Cu, meta-torbernite) and Cu[(UO2)2(SiO3OH)2]·6H2O (cuprosklodowskite) no Eu(iii) emission was observed, indicating no incorporation into, or sorption onto the structure. In the examples with Eu(3+) incorporation, sensitized emission is seen and the lifetimes, hydration numbers and quantum yields have been determined. Time Resolved Laser Induced Fluroescence Spectroscpoy (TRLFS) at 10 K have also been measured and the resolution enhancements at these temperatures allow further information to be derived on the sites of Eu(iii) incorporation. Infrared and Raman spectra are recorded, and SEM analysis show significant morphology changes and the substitution of particularly Ca(2+) by Eu(3+) ions. Therefore, Eu(3+) can substitute Ca(2+) in the interlayers of becquerelite and liebigite and in the structure of andersonite, whilst in grimselite only sodium is exchanged. These results have guided an investigation into the reactions with (241)Am on a tracer scale and results from gamma-spectrometry show that becquerelite, andersonite, grimselite, liebigite and compreignacite can include americium in the structure. Shifts in the U[double bond, length as m-dash]O and C-O Raman active bands are similar to that observed in the Eu(iii) analogues and Am(iii) photoluminescence measurements are also reported on these phases; the Am(3+) ion quenches the emission from the uranyl ion.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6dt00199hDOI Listing

Publication Analysis

Top Keywords

uranyl minerals
12
euiii
5
investigation interactions
4
interactions eu³⁺
4
eu³⁺ am³⁺
4
uranyl
4
am³⁺ uranyl
4
minerals
4
minerals implications
4
implications storage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!