The very common GNB3 c.825C>T polymorphism (rs5443) is present in approximately half of all human chromosomes. Significantly, the presence of the GNB3 825T allele has been strongly associated with predisposition to essential hypertension. Paradoxically the presence of the GNB3 825T allele, in exon 10, introduces a pathogenic alternative RNA splice site into the middle of exon 9. To attempt to correct this pathogenic aberrant splicing, we, therefore, bioinformatically designed, using a Gene Tools(®) algorithm, a GNB3-specific, antisense morpholino. It was hoped that this morpholino would behave in vitro as either a potential splice blocker and/or exon skipper, to both bind and inhibit/reduce the aberrant splicing of the GNB3 825T allele. On transfecting a human lymphoblast cell line homozygous for the 825T allele, with this antisense morpholino, we encouragingly observed both a significant reduction (from ∼58% to ∼5%) in the production of the aberrant smaller GNB3 transcript, and a subsequent increase in the normal GNB3 transcript (from ∼42% to ∼95%). Our results demonstrate the potential use of a GNB3-specific antisense morpholino, as a pharmacogenetic therapy for essential hypertension.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/nat.2015.0571 | DOI Listing |
Mol Ther
December 2024
NeuroEpigenetics laboratory, Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy.
Loss-of-function mutations in the chromodomain helicase DNA-binding 8 (CHD8) gene are strongly associated with Autism Spectrum Disorders (ASD). Indeed, the reduction of CHD8 causes transcriptional, epigenetic and cellular phenotypic changes correlated to disease, that can be monitored in assessing new therapeutic approaches. SINEUPs are a functional class of natural and synthetic antisense long non-coding RNAs able to stimulate the translation of sense target mRNA, with no effect on transcription.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.
Background And Objectives: Friedreich's Ataxia (FRDA) is a genetic disease that affects a variety of different tissues. The disease is caused by a mutation in the gene ( which is important for the synthesis of iron-sulfur clusters. The primary pathologies of FRDA are loss of motor control and cardiomyopathy.
View Article and Find Full Text PDFJ Med Genet
December 2024
Institute of Neuroanatomy, Medical Faculty, University of Bonn, Bonn, Germany.
Background: Previous studies in mouse, and zebrafish embryos show strong expression in progenitor cells of neuronal and neural crest tissues suggesting its involvement in neural crest specification. However, the role of human transcription factor activator protein 2 ( in human embryonic central nervous system (CNS), orofacial and maxillofacial development is unknown.
Methods: Through a collaborative work, exome survey was performed in families with congenital CNS, orofacial and maxillofacial anomalies.
PLoS One
December 2024
School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.
Cytosolic thiouridylase is a conserved cytoplasmic tRNA thiolase composed of two different subunits, CTU1 and CTU2. CTU2 serves as a scaffold protein, while CTU1 catalyzes the 2-thiolation at the 34th wobble uridine of the anticodon loop. tRNAGlnUUG, tRNAGluUUC, and tRNALysUUU are the tRNA substrates that are modified with a thiol group at the C2 positions (s2) by CTU1, and also with a methoxycarbonylmethyl group at the C5 positions (mcm5) by Elongator and ALKBH8.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar.
(Guanine Nucleotide-Binding Protein, Alpha Stimulating) is a complex gene that encodes the alpha subunit of the stimulatory G protein (Gα), critical for signaling through various G protein-coupled receptors. Inactivating genetic and epigenetic changes in , resulting in Gα deficiency, cause different variants of pseudohypoparathyroidism, which may manifest features of Albright hereditary osteodystrophy (AHO, a syndrome characterized by early-onset obesity and other developmental defects). Recent findings have linked Gα deficiency with isolated, severe, early-onset obesity, suggesting it as a potential, underrecognized cause of monogenic, non-syndromic obesity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!