Purpose: Recent studies suggest that the neural retinal response to light is compromised in diabetes. Electroretinogram studies suggest that the dim light retinal rod pathway is especially susceptible to diabetic damage. The purpose of this study was to determine whether diabetes alters rod pathway signaling.

Methods: Diabetes was induced in C57BL/6J mice by three intraperitoneal injections of streptozotocin (STZ; 75 mg/kg), and confirmed by blood glucose levels > 200 mg/dL. Six weeks after the first injection, whole-cell voltage clamp recordings of spontaneous and light-evoked inhibitory postsynaptic currents from rod bipolar cells were made in dark-adapted retinal slices. Light-evoked excitatory currents from rod bipolar and AII amacrine cells, and spontaneous excitatory currents from AII amacrine cells were also measured. Receptor inputs were pharmacologically isolated. Immunohistochemistry was performed on whole mounted retinas.

Results: Rod bipolar cells had reduced light-evoked inhibitory input from amacrine cells but no change in excitatory input from rod photoreceptors. Reduced light-evoked inhibition, mediated by both GABAA and GABAC receptors, increased rod bipolar cell output onto AII amacrine cells. Spontaneous release of GABA onto rod bipolar cells was increased, which may limit GABA availability for light-evoked release. These physiological changes occurred in the absence of retinal cell loss or changes in GABAA receptor expression levels.

Conclusions: Our results indicate that early diabetes causes deficits in the rod pathway leading to decreased light-evoked rod bipolar cell inhibition and increased rod pathway output that provide a basis for the development of early diabetic visual deficits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819579PMC
http://dx.doi.org/10.1167/iovs.15-17999DOI Listing

Publication Analysis

Top Keywords

rod bipolar
24
rod pathway
20
amacrine cells
16
reduced light-evoked
12
rod
12
bipolar cells
12
aii amacrine
12
light-evoked inhibition
8
light-evoked inhibitory
8
currents rod
8

Similar Publications

Evolution of rod bipolar cells and rod vision.

J Physiol

January 2025

Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA.

Bipolar cells are vertebrate retinal interneurons conveying signals from rod and cone photoreceptors to amacrine and ganglion cells. Bipolar cells are found in all vertebrates and have many structural and molecular affinities with photoreceptors; they probably appeared very early during vertebrate evolution in conjunction with rod and cone progenitors. There are two types of bipolar cells, responding to central illumination with depolarization (ON) or hyperpolarization (OFF).

View Article and Find Full Text PDF

A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.

View Article and Find Full Text PDF

During retinal visual processing, rod bipolar cells (RBC) transfer scotopic signals from rods to AII amacrine cells as second-order neurons. Elucidation of the RBC's excitation/inhibition is essential for understanding the visual signal transmission. Excitation mechanisms via mGluR6 and voltage-gated Ca2+ channels in the RBCs and GABAergic inhibitory synaptic inputs have been studied in previous studies.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of mechanosensitive channels (MSCs) in the retina, particularly how they relate to conditions like glaucoma and retinal injuries caused by increased pressure.
  • Using advanced techniques, the researchers analyzed the expression of various MSCs in different retinal cells, including Müller cells and retinal ganglion cells (RGCs).
  • They found a critical balance between hyperpolarizing and depolarizing MSCs in retinal neurons, suggesting that this balance may affect how vulnerable these neurons are to pressure-induced damage, highlighting potential new avenues for treatment.
View Article and Find Full Text PDF

The Insulated Gate Bipolar Transistor (IGBT) is the key power device in the rod control power cabinet of nuclear power plants; its reliable operation is of great significance for ensuring the safe and economical operation of the nuclear power plants. Therefore, it is necessary to conduct fault prediction research on IGBT to achieve better condition-based maintenance and improve its operational reliability. However, power cabinets often operate under multiple, complex working conditions, so predicting IGBT faults from single working condition data usually has limitations and low accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!