Background: Dysmotility in the gastrointestinal (GI) tract often leads to impaired transit of luminal contents leading to symptoms of diarrhea or constipation. The aim of this research was to develop a technique using high resolution X-ray imaging to study pharmacologically induced aged rat models of chronic GI dysmotility that mimic accelerated transit (diarrhea) or constipation. The 5-hydroxytryptamine type 4 (5-HT4 ) receptor agonist prucalopride was used to accelerate transit, and the opioid agonist loperamide was used to delay transit.
Methods: Male rats (18 months) were given 0, 1, 2, or 4 mg/kg/day prucalopride or loperamide (in dimethyl sulfoxide, DMSO) for 7 days by continuous 7-day dosing. To determine the GI region-specific effect, transit of six metallic beads was tracked over 12 h using high resolution X-ray imaging. An established rating scale was used to classify GI bead location in vivo and the distance beads had propagated from the caecum was confirmed postmortem.
Key Results: Loperamide (1 mg/kg) slowed stomach emptying and GI transit at 9 and 12 h. Prucalopride (4 mg/kg) did not significantly alter GI transit scores, but at a dose of 4 mg/kg beads had moved significantly more distal than the caecum in 12 h compared to controls.
Conclusions & Inferences: We report a novel high-resolution, non-invasive, X-ray imaging technique that provides new insights into GI transit rates in live rats. The results demonstrate that loperamide slowed overall transit in aged rats, while prucalopride increased stomach emptying and accelerates colonic transit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nmo.12824 | DOI Listing |
Knee
January 2025
Department of Radiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan.
Background: Long-leg alignment and joint line obliquity have traditionally been assessed using two-dimensional (2D) radiography, but the accuracy of this measurement has remained unclear. This study aimed to evaluate the accuracy of 2D measurements of lateral distal femoral angle (LDFA) and medial proximal tibial angle (MPTA) using upright three-dimensional (3D) computed tomography (CT).
Methods: This study involved 66 knees from 38 patients (34 women, four men) with knee osteoarthritis (OA), categorized by Kellgren-Lawrence (KL) grade.
JMIR Cancer
January 2025
Division of Radiology and Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Background: The application of natural language processing in medicine has increased significantly, including tasks such as information extraction and classification. Natural language processing plays a crucial role in structuring free-form radiology reports, facilitating the interpretation of textual content, and enhancing data utility through clustering techniques. Clustering allows for the identification of similar lesions and disease patterns across a broad dataset, making it useful for aggregating information and discovering new insights in medical imaging.
View Article and Find Full Text PDFOrv Hetil
January 2025
1 Semmelweis Egyetem, Általános Orvostudományi Kar, Belgyógyászati és Onkológiai Klinika Budapest, Korányi S. u. 2/A, 1083 Magyarország.
Calcif Tissue Int
January 2025
Endocrinology Department, School of Medicine, Pontificia Universidad Católica de Chile, Av. Diagonal Paraguay 262, Cuarto Piso, Santiago, Chile.
X-linked hypophosphatemia (XLH) is a rare metabolic disorder characterized by elevated FGF23 and chronic hypophosphatemia, leading to impaired skeletal mineralization and enthesopathies that are associated with pain, stiffness, and diminished quality of life. The natural history of enthesopathies in XLH remains poorly defined, partly due to absence of a sensitive quantitative tool for assessment and monitoring. This study investigates the utility of 18F-NaF PET/CT scans in characterizing enthesopathies in XLH subjects.
View Article and Find Full Text PDFWest Afr J Med
September 2024
Department of Restorative Dentistry, University College Hospital, Ibadan, Oyo State, Nigeria. Email: Phone Number: +2348033890679.
Negotiation of the intricate pulp canal space may pose a challenge in endodontic treatment. Consequently, appropriate diagnosis and thorough knowledge of the pattern and distribution of root canal systems are imperative for a more predictable outcome in the treatment of pulp diseases. Accordingly, cone beam computed tomography (CBCT) is deemed appropriate as an adjunctive diagnostic tool in endodontics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!