Purpose: Computer assistance is increasingly common in surgery. However, the amount of information is bound to overload processing abilities of surgeons. We propose methods to recognize the current phase of a surgery for context-aware information filtering. The purpose is to select the most suitable subset of information for surgical situations which require special assistance.

Methods: We combine formal knowledge, represented by an ontology, and experience-based knowledge, represented by training samples, to recognize phases. For this purpose, we have developed two different methods. Firstly, we use formal knowledge about possible phase transitions to create a composition of random forests. Secondly, we propose a method based on cultural optimization to infer formal rules from experience to recognize phases.

Results: The proposed methods are compared with a purely formal knowledge-based approach using rules and a purely experience-based one using regular random forests. The comparative evaluation on laparoscopic pancreas resections and adrenalectomies employs a consistent set of quality criteria on clean and noisy input. The rule-based approaches proved best with noisefree data. The random forest-based ones were more robust in the presence of noise.

Conclusion: Formal and experience-based knowledge can be successfully combined for robust phase recognition.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11548-016-1379-2DOI Listing

Publication Analysis

Top Keywords

experience-based knowledge
12
formal experience-based
8
formal knowledge
8
knowledge represented
8
random forests
8
formal
6
knowledge
5
bridging gap
4
gap formal
4
experience-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!