Effective Rheological Properties in Semi-dilute Bacterial Suspensions.

Bull Math Biol

Department of Mathematics, The Pennsylvania State University, University Park, PA, 16802, USA.

Published: March 2016

Interactions between swimming bacteria have led to remarkable experimentally observable macroscopic properties such as the reduction in the effective viscosity, enhanced mixing, and diffusion. In this work, we study an individual-based model for a suspension of interacting point dipoles representing bacteria in order to gain greater insight into the physical mechanisms responsible for the drastic reduction in the effective viscosity. In particular, asymptotic analysis is carried out on the corresponding kinetic equation governing the distribution of bacteria orientations. This allows one to derive an explicit asymptotic formula for the effective viscosity of the bacterial suspension in the limit of bacterium non-sphericity. The results show good qualitative agreement with numerical simulations and previous experimental observations. Finally, we justify our approach by proving existence, uniqueness, and regularity properties for this kinetic PDE model.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11538-016-0156-2DOI Listing

Publication Analysis

Top Keywords

effective viscosity
12
reduction effective
8
effective
4
effective rheological
4
rheological properties
4
properties semi-dilute
4
semi-dilute bacterial
4
bacterial suspensions
4
suspensions interactions
4
interactions swimming
4

Similar Publications

While biomass burning (BB) is the largest source of fine particles in the atmosphere, the influence of relative humidity (RH) and photochemistry on BB secondary organic aerosol (BB-SOA) formation and aging remains poorly constrained. These effects need to be addressed to better capture and comprehend the evolution of BB-SOA in the atmosphere. Cresol (CHO) is used as a BB proxy to investigate these effects.

View Article and Find Full Text PDF

Background: Hot-melt Pressure-sensitive Adhesives (HMPSA) are eco-friendly pressuresensitive adhesives, with the potential of being used as substrates for transdermal patches. However, due to the low hydrophilicity of HMPSA, the application is limited in the field of Traditional Chinese Medicine (TCM) plasters.

Methods: Three modified HMPSA were prepared with acrylic resin EPO, acrylic resin RL100, and Polyvinylpyrrolidone (PVP) as the modifying materials.

View Article and Find Full Text PDF

Gelatin is a versatile substance extensively used in medical and pharmaceutical industries for many applications, including capsule shells, X-ray film, infusion for plasma substitute, and the fabricating of artificial tissue. Fish scale gelatin is a profitable alternative source as a halal material despite its inferior quality. An addition of phenolic cross-linker may enhance the qualities of fish scale gelatin.

View Article and Find Full Text PDF

Flaxseed gum (FSG) has promising applications in the field of nano/microencapsulation for its biocompatibility and excellent physicochemical properties. In this study, FSG-based nano-microcapsules (FSG NPs) were prepared using high-speed shear homogenization combined with ultrasound for efficient encapsulation of secoisolariciresinol diglucoside (SDG). The particle size of FSG stands for nano-microcapsules (NP) was determined to be 336.

View Article and Find Full Text PDF

Analyzing the chemical composition of different kinds of acrylic cement is necessary to understand their properties and suitability for curing bone defects. Conducting various chemical tests can give valuable insight into the composition, viscosity, and performance characteristics of each kind of cement, Therefore, our study aimed to find safety standards and the effectiveness of these products for medical applications. The polymeric characterization was determined by Nuclear Magnetic Resonance (H-NMR) spectroscopy and Fourier-transform infrared spectroscopy (FTIR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!