The innate immune system is the first line of defense against infection by pathogens. It consists of various elements, including Toll-like receptors (TLRs), which recognize molecular patterns associated with pathogens and trigger the immune response, through activation of important transcription factors such as NF-κB, which are usually found sequestered in the cytoplasm by IκBα until it receives the release signal. Piscirickettsia salmonis causes piscirickettsiosis or salmonid rickettsial septicemia, a disease of great importance in Chile, representing 79.4% of the secondary mortality in important species such as Salmo salar, which is reflected in the Chilean economy. Prolactin (PRL) is a peptide hormone which has immunomodulating functions in mammals and some fish. Olavarría et al. (2010, J Immunol 185:3873-3883) determined its ability to increase the respiratory burst, its relationship with the JAK/STAT pathway, and the expression of interleukin IL-1β in Sparus aurata. Therefore, the present study was intended to establish a possible correlation and modulation between the signal transduction pathway of PRL (JAK/STAT), the pathways of NF-κB, and TLRs, in an infection caused by P. salmonis in salmon head kidney (SHK‑1) cells of S. salar. Stimulus with native PRL from S. salar was performed, and gene expression was analyzed for IL-1β, IκBα, TLR1, and TLR5M (membrane-bound form). In addition, the effect of PRL in the nuclear translocation of the transcription factor NF-κB and the possible involvement of JAK2 were analyzed by using a pharmacological inhibitor of this kinase. The results show a positive modulation of PRL in all analyzed genes and a significant increase in the translocation of NF-κB, recording a maximum at 2 h post-treatment, supporting the stimulatory hypothesis of PRL.

Download full-text PDF

Source
http://dx.doi.org/10.3354/dao02967DOI Listing

Publication Analysis

Top Keywords

tlr1 tlr5m
8
piscirickettsia salmonis
8
prl
6
immunostimulatory effects
4
effects prolactin
4
prolactin tlr1
4
tlr5m shk-1
4
shk-1 cells
4
cells infected
4
infected piscirickettsia
4

Similar Publications

Comprehensive analysis of diel rhythmic expression of the medaka toll-like receptor gene family.

Dev Comp Immunol

May 2024

Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, 889-2192, Japan. Electronic address:

Several immune-related genes, including Toll-like receptors (TLR), are associated with circadian rhythms in mammals. However, information on the circadian rhythmic expression of TLRs in fish is limited. In this study, we aimed to analyze the regulation of diel oscillations in the expression of TLR genes in Japanese medaka (Oryzias latipes).

View Article and Find Full Text PDF

Identification and expression analysis of sixteen Toll-like receptor genes, TLR1, TLR2a, TLR2b, TLR3, TLR5M, TLR5S, TLR7-9, TLR13a-c, TLR14, TLR21-23 in mandarin fish Siniperca chuatsi.

Dev Comp Immunol

August 2021

State Key Laboratory of Freshwater Ecology and Biotechnology, And Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, 430072, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China. Electronic address:

Toll-like receptors (TLRs), as a family of pattern recognition receptors (PRRs), possess specific pathogen-related molecular pattern (PAMP) recognition spectrum in inducing immune responses. In this study, sixteen TLRs were identified and characterized in mandarin fish (Siniperca chuatsi). All these TLRs consist of leucine-rich repeats (LRRs), a transmembrane domain and a Toll/interleukin-I receptor (TIR) domain, with the exception of TLR5S which lacks TIR domain, and they can be clustered into five branches, i.

View Article and Find Full Text PDF

Hypoxia modulates the transcriptional immunological response in Oncorhynchus kisutch.

Fish Shellfish Immunol

November 2020

Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL) Universidad Austral de Chile, casilla, 567, Valdivia, Chile. Electronic address:

Oncorhynchus kisutch is the third most cultivated salmonid species in the Chilean salmon industry and its farming conditions are characterised by high stocking density leading to the generation of high levels of organic matter (food - feces) and decomposition. In addition to the increasingly frequent hypoxic oceanographic events, these inappropriate farming conditions increase the demand for oxygen within the fish farm pen and lead to the appearance of hypoxic events that are harmful to fish.This study aimed to evaluate the stress response (cortisol) and transcription of genes involved in the immune response in head kidney and spleen of Oncorhynchus kisutch subjected to chronic hypoxic stress conditions.

View Article and Find Full Text PDF

The innate immune system is the first line of defense against infection by pathogens. It consists of various elements, including Toll-like receptors (TLRs), which recognize molecular patterns associated with pathogens and trigger the immune response, through activation of important transcription factors such as NF-κB, which are usually found sequestered in the cytoplasm by IκBα until it receives the release signal. Piscirickettsia salmonis causes piscirickettsiosis or salmonid rickettsial septicemia, a disease of great importance in Chile, representing 79.

View Article and Find Full Text PDF

Bacterial lipopolysaccharide induces rainbow trout myotube atrophy via Akt/FoxO1/Atrogin-1 signaling pathway.

Acta Biochim Biophys Sin (Shanghai)

November 2015

Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 8370146, Chile Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción, Chile

Lipopolysaccharide (LPS) is considered as a powerful inducer of muscle atrophy in higher vertebrates due to skeletal muscle cell recognition of the endotoxin and a consequent activation of catabolic signaling pathways. In contrast, there is no evidence of LPS directly inducing skeletal muscle atrophy in lower vertebrates, such as fish. For years it has been assumed that fish are resistant to LPS, mainly due to differences in the key features of toll-like receptor (TLR) signaling pathways when compared with mammals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!