Three-Dimensional Reconstruction of Three-Way FRET Microscopy Improves Imaging of Multiple Protein-Protein Interactions.

PLoS One

Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, United States of America.

Published: August 2016

Fluorescence resonance energy transfer (FRET) microscopy is a powerful tool for imaging the interactions between fluorescently tagged proteins in two-dimensions. For FRET microscopy to reach its full potential, it must be able to image more than one pair of interacting molecules and image degradation from out-of-focus light must be reduced. Here we extend our previous work on the application of maximum likelihood methods to the 3-dimensional reconstruction of 3-way FRET interactions within cells. We validated the new method (3D-3Way FRET) by simulation and fluorescent protein test constructs expressed in cells. In addition, we improved the computational methods to create a 2-log reduction in computation time over our previous method (3DFSR). We applied 3D-3Way FRET to image the 3D subcellular distributions of HIV Gag assembly. Gag fused to three different FPs (CFP, YFP, and RFP), assembled into viral-like particles and created punctate FRET signals that become visible on the cell surface when 3D-3Way FRET was applied to the data. Control experiments in which YFP-Gag, RFP-Gag and free CFP were expressed, demonstrated localized FRET between YFP and RFP at sites of viral assembly that were not associated with CFP. 3D-3Way FRET provides the first approach for quantifying multiple FRET interactions while improving the 3D resolution of FRET microscopy data without introducing bias into the reconstructed estimates. This method should allow improvement of widefield, confocal and superresolution FRET microscopy data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811573PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152401PLOS

Publication Analysis

Top Keywords

fret microscopy
20
3d-3way fret
16
fret
13
fret interactions
8
yfp rfp
8
microscopy data
8
microscopy
5
three-dimensional reconstruction
4
reconstruction three-way
4
three-way fret
4

Similar Publications

Arbuscular mycorrhizal (AM) fungi engage in symbiotic relationships with plants, influencing their phosphate (Pi) uptake pathways, metabolism, and root cell physiology. Despite the significant role of Pi, its distribution and response dynamics in mycorrhizal roots remain largely unexplored. While traditional techniques for Pi measurement have shed some light on this, real-time cellular-level monitoring has been a challenge.

View Article and Find Full Text PDF

Fluorescence lifetime imaging in drug delivery research.

Adv Drug Deliv Rev

January 2025

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia; School of Mathematical and Physical Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia; Research Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sochi, Russia; National Research Ogarev Mordovia State University, Saransk, Mordovia Republic 430005, Russia.

Once an exotic add-on to fluorescence microscopy for life science research, fluorescence lifetime imaging (FLIm) has become a powerful and increasingly utilised technique owing to its self-calibration nature, which affords superior quantification over conventional steady-state fluorescence imaging. This review focuses on the state-of-the-art implementation of FLIm related to the formulation, release, dosage, and mechanism of action of drugs aimed for innovative diagnostics and therapy. Quantitative measurements using FLIm have appeared instrumental for encapsulated drug delivery design, pharmacokinetics and pharmacodynamics, pathological investigations, early disease diagnosis, and evaluation of therapeutic efficacy.

View Article and Find Full Text PDF

Polyelectrolyte brushes (PEBs) undergo conformational transitions due to changes in pH and/or ionic strength, which is leveraged as smart surfaces and on-demand drug-release systems. However, probing conformational transitions of functional PEBs has remained challenging due to low spatiotemporal resolution of characterization methods. Herein, fluorescently-coupled PEBs are devised that give rise to Förster Resonance Energy Transfer (FRET) intrinsically coupled to conformational transitions of chains.

View Article and Find Full Text PDF

CDK2 activity crosstalk on the ERK kinase translocation reporter can be resolved computationally.

Cell Syst

January 2025

Department of Biochemistry & BioFrontiers Institute, University of Colorado, Boulder, CO 80303, USA. Electronic address:

The mitogen-activated protein kinase (MAPK) pathway integrates growth factor signaling through extracellular signal-regulated kinase (ERK) to control cell proliferation. To study ERK dynamics, many researchers use an ERK activity kinase translocation reporter (KTR). Our study reveals that this ERK KTR also partially senses cyclin-dependent kinase 2 (CDK2) activity, making it appear as if ERK activity rises as cells progress through the cell cycle.

View Article and Find Full Text PDF

Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique for studying the structural dynamics of protein molecules or detecting interactions between protein molecules in real time. Due to the high sensitivity in spatial and temporal resolution, smFRET can decipher sub-populations within heterogeneous native state conformations, which are generally lost in traditional measurements due to ensemble averaging. In addition, the single-molecule reconstitution allows protein molecules to be observed for an extensive period of time and can recapitulate the geometry of the cellular environment to retain biological function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!