Stroke affecting white matter accounts for up to 25% of clinical stroke presentations, occurs silently at rates that may be 5-10 fold greater, and contributes significantly to the development of vascular dementia. Few models of focal white matter stroke exist and this lack of appropriate models has hampered understanding of the neurobiologic mechanisms involved in injury response and repair after this type of stroke. The main limitation of other subcortical stroke models is that they do not focally restrict the infarct to the white matter or have primarily been validated in non-murine species. This limits the ability to apply the wide variety of murine research tools to study the neurobiology of white matter stroke. Here we present a methodology for the reliable production of a focal stroke in murine white matter using a local injection of an irreversible eNOS inhibitor. We also present several variations on the general protocol including two unique stereotactic variations, retrograde neuronal tracing, as well as fresh tissue labeling and dissection that greatly expand the potential applications of this technique. These variations allow for multiple approaches to analyze the neurobiologic effects of this common and understudied form of stroke.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4829029 | PMC |
http://dx.doi.org/10.3791/53404 | DOI Listing |
Neurology
February 2025
Department of Medicine, University of Toronto, Canada.
Background And Objective: It is unclear whether variation in covert cerebrovascular disease prevalence is attributable to ethnic differences or to other factors. We aimed to examine the associations of country of residence with covert vascular brain injury (VBI) and cognitive dysfunction among Chinese adults residing in Canada and China.
Methods: This was a multisite cross-sectional study of Chinese adults aged 40-80 years in the Canadian Alliance for Healthy Hearts and Healthy Minds (CAHHM; January 1, 2014, to December 31, 2018) and Prospective Urban Rural Epidemiological-Mind (PURE-MIND; November 1, 2010, to July 31, 2015) cohorts living in Canada and China.
J Neuroimaging
January 2025
Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.
Background And Purpose: Peak width of skeletonized mean diffusivity (PSMD) is a novel marker of white matter damage, which may be related to small vessel disease. This study aimed to investigate the presence of white matter damage in patients with isolated rapid eye movement sleep behavior disorder (RBD) using PSMD.
Methods: We enrolled patients with newly diagnosed isolated RBD confirmed by polysomnography and age- and sex-matched healthy controls.
Alzheimers Dement
December 2024
Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA.
Background: Neurite degeneration is increasingly suspected to represent a causal feature of mild cognitive impairment (MCI) and Alzheimer's disease (AD). Therefore, sensitive and specific imaging biomarkers of neuronal degeneration are needed to elucidate the mechanisms underlying cognitive impairment in MCI and AD. However, the recently developed Neurite Orientation Dispersion and Density Imaging (NODDI) MRI technique, used to measure the neurite density index (NDI), has some limitations.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Michigan Alzheimer's Disease Research Center, Ann Arbor, MI, USA.
Background: Diffusion magnetic resonance imaging (dMRI) permits characterizing differences in white matter microstructure associated with amnestic mild cognitive impairment (aMCI) and Alzheimer's dementia (AD). However, most dMRI measures aggregate signals across multiple axonal fiber populations with varying spatial orientations, which limits the sensitivity and specificity of clinical diagnosis. To overcome this shortcoming, we estimated fiber density (FD) measures, independently from crossing fiber populations, and extracellular cerebral spinal fluid (CSF).
View Article and Find Full Text PDFBackground: Reactive astrogliosis refers to functional and morphological changes in astrocytes that occur with neuronal damage in numerous neurological conditions. PET tracers targeting monoamine oxidase B (MAO-B) are used to visualize reactive astrogliosis in the living brain. [F]SMBT-1, a MAO-B selective PET tracer, was developed by modifying the chemical structure of [F]THK5351.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!