Recently, it has been shown that G protein-coupled receptors (GPCRs) display intrinsic voltage sensitivity. We reported that the voltage sensitivity of M2 muscarinic receptor (M2R) is also ligand specific. Here, we provide additional evidence to understand the mechanism underlying the ligand-specific voltage sensitivity of the M2R. Using ACh, pilocarpine (Pilo), and bethanechol (Beth), we evaluated the agonist-specific effects of voltage by measuring the ACh-activated K(+) current (I KACh) in feline and rabbit atrial myocytes and in HEK-293 cells expressing M2R-Kir3.1/Kir3.4. The activation of I KACh by the muscarinic agonist Beth was voltage insensitive, suggesting that the voltage-induced conformational changes in M2R do not modify its affinity for this agonist. Moreover, deactivation of the Beth-evoked I KACh was voltage insensitive. By contrast, deactivation of the ACh-induced I KACh was significantly slower at -100 mV than at +50 mV, while an opposite effect was observed when I KACh was activated by Pilo. These findings are consistent with the voltage affinity pattern observed for these three agonists. Our findings suggest that independent of how voltage disturbs the receptor binding site, the voltage dependence of the signaling pathway is ultimately determined by the agonist. These observations emphasize the pharmacological potential to regulate the M2R-parasympathetic associated cardiac function and also other cellular signaling pathways by exploiting the voltage-dependent properties of GPCRs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00424-016-1812-y | DOI Listing |
ACS Sens
January 2025
Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States.
Bioanalytical sensors are adept at quantifying target analytes from complex sample matrices with high sensitivity, but their multiplexing capacity is limited. Conversely, analytical separations afford great multiplexing capacity but typically require analyte labeling to increase sensitivity. Here, we report the development of a separation-based sensor to sensitively quantify unlabeled polysaccharides using particle motion tracking within a microfluidic electrophoresis platform.
View Article and Find Full Text PDFObjective To develop an algorithm, based on the voltage matrix, for detecting regular cochlear implant (CI) electrode position during the implantation procedure, tip fold-over or basal kinking for lateral-wall electrodes. The availability of an algorithm would be valuable in clinical routine, as incorrect positioning of the electrode array can potentially be recognized intraoperatively. Design In this retrospective study intraoperative voltage matrix and postoperative digital volume tomography of 525 CI recipients were analyzed.
View Article and Find Full Text PDFEur Radiol Exp
January 2025
Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy.
Background: Photon-counting detector (PCD) technology has the potential to reduce noise in computed tomography (CT). This study aimed to carry out a voxelwise noise characterization for a clinical PCD-CT scanner with a model-based iterative reconstruction algorithm (QIR).
Methods: Forty repeated axial acquisitions (tube voltage 120 kV, tube load 200 mAs, slice thickness 0.
Nat Commun
January 2025
Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
eNeuro
January 2025
Graduate School of Pharmaceutical Science, Tokushima Bunri University, Sanuki, Japan
Cuprizone (CPZ) is a widely used toxin that induces demyelinating diseases in animal models, producing multiple sclerosis (MS)-like pathology in rodents. CPZ is one of the few toxins that triggers demyelination and subsequent remyelination following the cessation of its application. This study examines the functional consequences of CPZ-induced demyelination and the subsequent recovery of neural communication within the anterior cingulate cortex (ACC), with a particular focus on inter-hemispheric connectivity via the corpus callosum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!