Sirtuins are emerging as the key regulators of metabolism and aging, and their potential activators and inhibitors are being explored as therapeutics for improving health and treating associated diseases. Despite the global structural similarity among all seven isoforms of sirtuins (of which most of them catalyze the deacetylation reaction), SIRT5 is the only isoform that catalyzes the cleavage of negatively charged acylated substrates, and the latter feature appears to be encoded by the presence of Tyr102 and Arg105 residues at the active site pocket of the enzyme. To determine the contributions of the above residues in SIRT5 (vis a vis the corresponding residues of SIRT1) on substrate selectivity, inhibition by EX527 and nicotinamide, secondary structural features and thermal stability of the enzymes, we created single and double mutations (viz. Y102A, R105l, and Y102A/R105I) in SIRT5. The kinetic data revealed that while Y102A mutant enzyme catalyzed both deacetylation and desuccinylation reactions with comparable efficiencies, R105I and Y102A/R105I mutant enzymes favored the deacetylase reaction. Like SIRT1, the nicotinamide inhibition of SIRT5 double mutant (Y102A/R105I) exhibited the mixed non-competitive behavior. On the other hand, the desuccinylation reaction of both wild-type and Y102A mutant enzymes conformed to the competitive inhibition model. The inhibitory potency of EX527 progressively increased from Y102A, R105I, to Y102A/R105 mutant enzymes in SIRT5, but it did not reach to the level obtained with SIRT1. The CD spectroscopic data for the wild-type and mutant enzymes revealed changes in the secondary structural features of the enzymes, and such changes were more pronounced on examining their thermal denaturation patterns. A cumulative account of our experimental data reveal mutual cooperation between Y102 and R105 residues in promoting the desuccinylation versus deacetylation reaction in SIRT5, and the overall catalytic feature of the enzyme is manifested via the mutation induced modulation in the protein structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811591 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152467 | PLOS |
J Agric Food Chem
January 2025
College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China.
Phytoene synthase (PSY) is one of key enzymes in carotenogenesis that catalyze two molecules of geranylgeranyl diphosphate to produce phytoene. PSY is widespread in bacteria, archaea, and eukaryotes. Currently, functional role and catalytic mechanism of archaeal PSY homologues have not been fully clarified due to the limited reports.
View Article and Find Full Text PDFChembiochem
January 2025
Jiangnan University, State Key Laboratory of Food Science and Technology, 1800 Lihu Road, Wuxi, China, 214122, Wuxi, CHINA.
Indigo is widely used in dyes, medicines and semiconductors materials due to its excellent dyeing efficiency, antibacterial, antiviral, anticancer, anti-corrosion, and thermostability properties. Here, a biosynthetic pathway for indigo was designed, integrating two enzymes (EcTnaA, MaFMO) into a higher L-tryptophan-producing the strain Escherichia coli TRP. However, the lower catalytic activity of MaFMO was a bottleneck for increasing indigo titers.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2025
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, USA.
N-acyl l-homoserine lactones are signaling molecules used by numerous bacteria in quorum sensing. Some bacteria encode lactonases, which can inactivate these signals. Lactonases were reported to inhibit quorum sensing-dependent phenotypes, including virulence and biofilm.
View Article and Find Full Text PDFVet Res
January 2025
Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
Porcine deltacoronavirus (PDCoV), also known as HKU15, is a swine enteropathogenic virus that is believed to have originated in birds. PDCoV belongs to the genus Deltacoronavirus (DCoV), the members of which have mostly been identified in diverse avian species. We recently reported that chicken or porcine aminopeptidase N (APN), the major cellular receptor for PDCoV, can mediate cellular entry via three pseudotyped retroviruses displaying spike proteins from three avian DCoVs (HKU11, HKU13, and HKU17).
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
Background: KRAS-G12C inhibitors mark a notable advancement in targeted cancer therapies, yet identifying predictive biomarkers for treatment efficacy and resistance remains essential for optimizing clinical outcomes.
Methods: This systematic meta-analysis synthesized studies available through September 2024 across PubMed, Cochrane Library, SpringerLink, and Embase. Using CRISPR/Cas9 technology, this study generated cells with KEAP1 and STK11 knockouts, and utilized lentiviral vectors to overexpress PD-L1.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!