Reproductive cell death (RCD) occurs after one or more cell divisions resulting from an insult such as radiation exposure or other treatments with carcinogens or mutagens. The radioadaptive response for RCD is usually investigated by in vitro or in vivo clonogenic assay. To date, this has not been demonstrated in the vulval tissue in Caenorhabditis elegans ( C. elegans ), which is a well established in vivo model for radiation-induced RCD. In this study to determine whether radioadaptive response occurs in the vulval tissue model of C. elegans , early larval worms were gamma irradiated with lower adaptive doses, followed by higher challenge doses. The ratio of protruding vulva was used to assess the RCD of vulval cells. The results of this study showed that the radioadaptive response for RCD in this vulval tissue model could be well induced by dose combinations of 5 + 75 Gy and 5 + 100 Gy at the time point of 14-16 h in worm development. In addition, the time course analysis indicated that radioresistance in vulval cells developed within 1.75 h after an adaptive dose and persisted for only a short period of time (2-4 h). DNA damage checkpoint and non-homologous end joining were involved in the radioadaptive response, exhibiting induction of protruding vulva in worms deficient in these two pathways similar to their controls. Interestingly, the DNA damage checkpoint was not active in the somatic vulval cells, and it was therefore suggested that the DNA damage checkpoint might mediate the radioadaptive response in a cell nonautonomous manner. Here, we show evidence of the occurrence of a radioadaptive response for RCD in the vulval tissue model of C. elegans . This finding provides a potential opportunity to gain further insight into the underlying mechanisms of the radioadaptive response for RCD, in view of the abundant genetic resources of C. elegans .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1667/RR14368.1 | DOI Listing |
Radiat Prot Dosimetry
November 2024
Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland.
The radiation adaptive response (or radioadaptation) effect is a biophysical and radiobiological phenomenon responsible for, e.g. the enhancement of repair processes, cell cycle and apoptosis regulation or enhancement of antioxidant production in cells/organisms irradiated by low doses and low dose-rates of ionising radiation.
View Article and Find Full Text PDFRadiat Environ Biophys
October 2024
Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, Warszawa, 00-662, Poland.
The presented paper describes the problem of human health in regions with high level of natural ionizing radiation in various places in the world. The radiation adaptive response biophysical model was presented and calibrated for the special case of constant dose-rate irradiation. The calibration was performed for the data of residents of several high background radiation areas, like Ramsar in Iran, Kerala in India or Yangjiang in China.
View Article and Find Full Text PDFSci Rep
August 2024
Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
In this paper, we demonstrated the biological effects of acute low-dose neutrons on the whole body of rats and investigated the impact of that level of neutron dose to induce an in vivo radio-adaptive response. To understand the radio-adaptive response, the examined animals were exposed to acute neutron radiation doses of 5 and 10 mSv, followed by a 50 mSv challenge dose after 14 days. After irradiation, all groups receiving single and double doses were kept in cages for one day before sampling.
View Article and Find Full Text PDFLife (Basel)
June 2024
Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
With the improvement of medical devices for diagnosis and radiotherapy, concerns about the effects of low doses of ionizing radiation are also growing. There is no consensus among scientists on whether they might have beneficial effects on humans in certain cases or pose more risks, making the exposure unreasonable. While the damaging consequences of high-dose radiation have been known since the discovery of radioactivity, low-dose effects present a much bigger investigative challenge.
View Article and Find Full Text PDFInt J Radiat Biol
July 2024
Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
Purpose: The radioadaptive response refers to a phenomenon wherein exposure to a low dose of ionizing radiation (LDIR) can induce a protective response in cells or organisms, reducing the adverse effects of a subsequent higher dose of ionizing radiation (HDIR). However, it is possible to administer the low dose after the challenge dose. This study was conducted to determine the potential mitigating effect of LDIR administered after HDIR on mice immune cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!