Cranial X irradiation can severely impair higher brain function, resulting in neurocognitive deficits. Radiation-induced brain injury is characterized by acute, early and late delayed changes, and morbidity is evident more than 6 months after irradiation. While the acute effects of radiation exposure on the brain are known, the underlying mechanisms remain unclear. In this study, we examined the acute effect of X radiation on synaptic function using behavioral analysis and immunohistochemistry. We found that 10 Gy whole-brain irradiation immediately after conditioning (within 30 min) impaired the formation of fear memory, whereas irradiation 24 h prior to conditioning did not. To investigate the mechanisms underlying these behavioral changes, we irradiated one hemisphere of the brain and analyzed synaptic function and adult neurogenesis immunohistochemically. We focused on drebrin, whose loss from dendritic spines is a surrogate marker of synaptopathy. The intensity of drebrin immunoreactivity started to decrease in the irradiated hemisphere 2 h after exposure. The immunostaining intensity recovered to preirradiation levels by 24 h, indicating that X radiation induced transient synaptic dysfunction. Interestingly, the number of newly generated neurons was not changed at 2 h postirradiation, whereas it was significantly decreased at 8 and 24 h postirradiation. Because irradiation 24 h prior to conditioning had no effect on fear memory, our findings suggest that radiation-induced death of newly-generated neurons does not substantially impact fear memory formation. The radiation-induced synaptic dysfunction likely caused a transient memory deficit during the critical period for fear memory formation (approximately 1-3 h after conditioning), which coincides with a change in drebrin immunostaining in the hippocampus, a structure critical for fear memory formation.

Download full-text PDF

Source
http://dx.doi.org/10.1667/RR14236.1DOI Listing

Publication Analysis

Top Keywords

fear memory
20
synaptic dysfunction
12
memory formation
12
transient synaptic
8
synaptic function
8
irradiation prior
8
prior conditioning
8
irradiated hemisphere
8
irradiation
6
memory
6

Similar Publications

Background: Intensive care unit (ICU) admissions can be traumatic for critically ill, ventilated acute respiratory distress syndrome (ARDS) patients due to fear of death, an inability to verbally communicate, reliance on health care professionals, and invasive medical interventions. Adult ARDS patients hospitalized during the COVID-19 pandemic were strictly isolated and had limited to no visitation from loved ones, impacting their access to support systems.

Objective: To explore the memories and sensory triggers for them (if applicable) of adult ARDS survivors hospitalized during the COVID-19 pandemic.

View Article and Find Full Text PDF

Cortisol Imbalance and Fear Learning in PTSD: Therapeutic Approaches to Control Abnormal Fear Responses.

Curr Neuropharmacol

January 2025

Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy.

Post-Traumatic Stress Disorder (PTSD) is mainly characterized by dysregulated fear re- sponses, including hyperarousal and intrusive re-experiencing of traumatic memories. This work delves into the intricate interplay between abnormal fear responses, cortisol dysregulation, and the Hypothalamic-Pituitary-Adrenal (HPA) axis, elucidating their role in the manifestation of PTSD. Giv- en the persistent nature of PTSD symptoms and the limitations of conventional therapies, innovative interventions are urgently needed.

View Article and Find Full Text PDF

Rewards are essential for motivation, decision-making, memory, and mental health. We identified the subventricular tegmental nucleus (SVTg) as a brainstem reward center. In mice, reward and its prediction activate the SVTg, and SVTg stimulation leads to place preference, reduced anxiety, and accumbal dopamine release.

View Article and Find Full Text PDF

Posttraumatic growth is essential for understanding how individuals process trauma and adapt psychologically in the aftermath of seismic events. This study aims to explore the mediating effects of resilience, self-efficacy, and positive childhood memories on the relationship between fear of earthquakes and post-traumatic growth among survivors of the 2023 Türkiye earthquake (N = 423). The results of a multi-mediation analysis indicated that earthquake fear indirectly influenced post-traumatic growth through resilience, self-efficacy, and positive childhood memories.

View Article and Find Full Text PDF

Cognitive mechanisms of aversive prediction error-induced memory enhancements.

J Exp Psychol Gen

January 2025

Department of Cognitive Psychology, Institute of Psychology, Universitat Hamburg.

While prediction errors (PEs) have long been recognized as critical in associative learning, emerging evidence indicates their significant role in episodic memory formation. This series of four experiments sought to elucidate the cognitive mechanisms underlying the enhancing effects of PEs related to aversive events on memory for surrounding neutral events. Specifically, we aimed to determine whether these PE effects are specific to predictive stimuli preceding the PE or if PEs create a transient window of enhanced, unselective memory formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!