Biomaterials are being extensively used in various biomedical fields; however, they are readily infected with microorganisms, thus posing a serious threat to the public health care. We herein presented a facile route to the antibacterial modification of an important A-B-A type biomaterial using poly (ethylene glycol) methyl ether (mPEG)- poly(ε-caprolactone) (PCL)-mPEG as a typical model. Inexpensive, commercial bis(2-hydroxyethyl) methylammonium chloride (DMA) was adopted as an antibacterial unit. The effective synthesis of the antibacterial copolymer mPEG-PCL-∼∼∼-PCL-mPEG (where ∼∼∼ denotes the segment with DMA units) was well confirmed by FTIR and (1)H NMR spectra. At an appropriate modification extent, the DMA unit could render the copolymer mPEG-PCL-∼∼∼-PCL-mPEG highly antibacterial, but did not largely alter its fascinating intrinsic properties including the thermosensitivity (e.g., the body temperature-induced sol-gel transition), non-cytotoxicity, and controlled drug release. A detailed study on the sol-gel-sol transition behavior of different copolymers showed that an appropriate extent of modification with DMA retained a sol-gel-sol transition, despite the fact that a too high extent caused a loss of sol-gel-sol transition. The hydrophilic and hydrophobic balance between mPEG and PCL was most likely broken upon a high extent of quaternization due to a large disturbance effect of DMA units at a large quantity (as evidenced by the heavily depressed PCL segment crystallinity), and thus the micelle aggregation mechanism for the gel formation could not work anymore, along with the loss of the thermosensitivity. The work presented here is highly expected to be generalized for synthesis of various block copolymers with immunity to microorganisms. Light may also be shed on understanding the phase transition behavior of various multiblock copolymers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2016.02.008DOI Listing

Publication Analysis

Top Keywords

sol-gel-sol transition
12
antibacterial modification
8
sol-gel transition
8
controlled drug
8
drug release
8
copolymer mpeg-pcl-∼∼∼-pcl-mpeg
8
dma units
8
transition behavior
8
high extent
8
transition
6

Similar Publications

Poloxamer 407 (P407) is used as a safety-guaranteed, invaluable pharmaceutical nanocarrier. The aqueous solution of P407 exhibits sol-to-gel and gel-to-sol transitions, specifically during a temperature rise. Here, we develop a method to determine the pair potential between colloidal particles based primarily on experimental small-angle scattering data.

View Article and Find Full Text PDF

Utilizing both medium enrichment and a thermos-responsive substrate to maintain the cell-to-cell junctions and extracellular matrix (ECM) intact, cell sheet technology has emerged as a ground-breaking approach. Investigating the possibility of using sodium selenite (as medium supplementation) and PCL-PEG-PCL (as vessel coating substrate) in the formation of the sheets from rat bone marrow-derived mesenchymal stem cells (rBMSCs) was the main goal of the present study. To this end, first, Polycaprolactone-co-Poly (ethylene glycol)-co-Polycaprolactone triblock copolymer (PCEC) was prepared by ring-opening copolymerization method and characterized by FTIR,  H NMR, and GPC.

View Article and Find Full Text PDF

Dual light-responsive cellulose nanofibril-based in situ hydrogel for drug-resistant bacteria infected wound healing.

Carbohydr Polym

December 2022

School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China. Electronic address:

In situ hydrogels with rapid hemostasis and antibacterial activity have received considerable attention in the field of wound healing. Herein, a white light and NIR dual light-responsive cellulose nanofibril (CNF)-based in situ hydrogel wound dressing is tailored by using white light-responsive CNF and endogenous antibacterial CNF as the skeleton, Prussian blue nanoparticles, Pluronic® F127 and hydroxypropyl methyl cellulose as the NIR, temperature-responsive switch and binder, respectively. The dressing exhibits rapid hemostasis properties in rat liver injury model with low blood loss of 286.

View Article and Find Full Text PDF

A wound dressing based on a thermosensitive hydrogel shows advantages over performed traditional dressings, such as rapid reversible sol-gel-sol transition properties and the capacity to fill an irregular-shaped wound area. Herein, RA-Amps was fabricated by coupling a self-assembled peptide RADA16 with an antibacterial peptide (Amps) and incorporated into a PNIPAM hydrogel containing an MGF E peptide to develop a multi-functional composite hydrogel with thermo-response properties, good biocompatibility, good mechanical properties, and antibacterial and carrier functions for wound healing. PNI/RA-Amps is an injectable thermo-reversible system with a phase transition temperature of ∼32 °C, and exhibits a rapid reversible sol-gel-sol transition of ∼23 s, which makes it conducive to sealing the wound area and avoiding sol diffusion caused by a lengthy gel time.

View Article and Find Full Text PDF

Dilution-induced gel-sol-gel-sol transitions by competitive supramolecular pathways in water.

Science

July 2022

Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands.

Fascinating properties are displayed by synthetic multicomponent supramolecular systems that comprise a manifold of competitive interactions, thereby mimicking natural processes. We present the integration of two reentrant phase transitions based on an unexpected dilution-induced assembly process using supramolecular polymers and surfactants. The co-assembly of the water-soluble benzene-1,3,5-tricarboxamide (BTA-EG) and a surfactant at a specific ratio yielded small-sized aggregates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!