In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756267PMC
http://dx.doi.org/10.1523/ENEURO.0085-15.2016DOI Listing

Publication Analysis

Top Keywords

ais
13
changes ais
12
neuron morphology
8
axon initial
8
initial segment
8
ais length
8
ais plasticity
8
somatodendritic morphology
8
distally located
8
located ais
8

Similar Publications

Background: Early neurological deterioration (END) is associated with a poor prognosis in acute ischemic stroke (AIS). Effectively lowering low-density lipoprotein cholesterol (LDL-C) can improve the stability of atherosclerotic plaque and reduce post-stroke inflammation, which may be an effective means to lower the incidence of END. The objective of this study was to determine the preventive effects of evolocumab on END in patients with non-cardiogenic AIS.

View Article and Find Full Text PDF

Introduction: Preclinical studies have shown that oxygen therapy can improve ischaemic brain tissue oxygen tension, reduce reperfusion injury after revascularisation, promote neuroregeneration and inhibit inflammatory responses potentially exerting a beneficial effect after endovascular treatment (EVT) in patients with acute ischaemic stroke (AIS). However, the optimal fraction of inspired oxygen (FiO) during EVT under general anaesthesia is currently unknown. Therefore, we are conducting a randomised controlled trial (RCT) to evaluate the impact of high-concentration oxygen vs low-concentration normobaric oxygen on early neurological function after EVT.

View Article and Find Full Text PDF

AI and Uncertain Motivation: Hidden allies that impact EFL argumentative essays using the Toulmin Model.

Acta Psychol (Amst)

January 2025

Department of English Language, College of Arts, King Faisal University, Al Ahsa, Saudi Arabia.

This study investigates the combined impact of artificial intelligence (AI) tools and Uncertain Motivation (UM) strategies on the argumentative writing performance of Saudi EFL learners, using the Toulmin Model. Sixty Saudi EFL students participated in four writing tasks, with results demonstrating significant improvements in essay quality, particularly in clarity, structure, and depth. AI tools provided real-time feedback, enhancing students' ability to refine claims, data, backing, and counterarguments.

View Article and Find Full Text PDF

Decoding Epilepsy: Prickle2 and Multifaceted Molecular Pathway Connections.

Curr Pharm Des

January 2025

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, China.

Background: The Prickle2 (Pk2) gene shows promising potential in uncovering the underlying causes of epilepsy, a neurological disorder that is currently not well understood. This paper utilizes the online tool PubMed to gather and condense information on the involvement of PCP channels and the associated roles of PCP pathway molecules in the onset of epilepsy. These findings are significant for advancing epilepsy treatment.

View Article and Find Full Text PDF

Intra-arterial Alteplase Thrombolysis After Successful Thrombectomy for Acute Ischemic Stroke in the Posterior Circulation (IAT-TOP): Study Protocol and Rationale.

Int J Stroke

January 2025

Department of Neurosurgery and Interventional Neuroradiology, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, National Center for Neurological Disorders, 45 Changchun St, Beijing 100053, China.

Rationale: The Chemical Optimization of Cerebral Embolectomy (CHOICE) trial suggested that the administration of intra-arterial alteplase after successful endovascular thrombectomy (EVT) may improve neurological outcomes in patients with acute ischemic stroke due to large vessel occlusion (AIS-LVO) in the anterior circulation. However, the use of adjunctive intra-arterial alteplase following successful EVT in acute posterior circulation stroke remains unexplored.

Aims: This study aims to investigate the efficacy and safety of intra-arterial alteplase after successful EVT for AIS-LVO in the posterior circulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!