The role of semaphorin 4D as a potential biomarker for antiangiogenic therapy in colorectal cancer.

Onco Targets Ther

Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People's Republic of China; Molecular Epidemiology Joint Laboratory, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People's Republic of China.

Published: March 2016

AI Article Synopsis

  • Sema4D is a member of class IV semaphorins, and its elevated levels may help tumors resist anti-angiogenic therapies, making it particularly relevant in colorectal cancer (CRC).
  • High expression of Sema4D was found in a majority of CRC samples, indicating its potential role in tumor growth and angiogenesis, independent of VEGF levels.
  • The study suggests that targeting Sema4D could be a promising strategy for inhibiting tumor angiogenesis and growth in CRC patients.

Article Abstract

Background: Semaphorin 4D (Sema4D) belongs to the class IV semaphorins, and accumulating evidence has indicated that its elevated level may be one strategy by which tumors evade current anti-angiogenic therapies. The biological roles of Sema4D in colorectal cancer (CRC), however, remain largely undefined. This study was designed to investigate the effects of Sema4D on tumor angiogenesis and growth in CRC, especially in different vascular endothelial growth factor (VEGF) backgrounds.

Methods: The expression of Sema4D in human CRC was evaluated by immunohistochemical analysis of tumors and their matching normal control tissues. The expression level of Sema4D and VEGF was investigated in different CRC cell lines. To evaluate the contributions of Sema4D to tumor-induced angiogenesis, two CRC cell lines with opposite VEGF backgrounds were infected with lentiviruses expressing Sema4D or Sema4D short hairpin RNA, followed by in vitro migration and in vivo tumor angiogenic assays.

Results: Immunohistochemical analysis of human CRC revealed high levels of Sema4D in a cell surface pattern. In all, 84.85% of CRC samples analyzed exhibited moderate to strong Sema4D expression. The positive ratios of Sema4D staining for well, moderately, and poorly differentiated cancers were 71.43%, 96.67%, and 77.27%, respectively. Sema4D is highly expressed in five different CRC cell lines, while VEGF expression level varies among these cell lines. HCT-116 showed the lowest VEGF level, while Caco-2 showed the maximum VEGF level. In vitro migration results show that regardless of cell type and VEGF background, Sema4D showed an enhanced in vitro proangiogenic effect to induce the migration of human umbilical vein endothelial cells. Finally, in vivo tumor angiogenic assays demonstrated that Sema4D alone can elicit a significant angiogenic response to promote tumor growth independently of VEGF.

Conclusion: Targeting Sema4D might serve as a parallel option for antiangiogenic therapy for CRC, particularly when traditional anti-VEGF therapies fail or tumors develop resistance to strategies targeting a single angiogenic signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4789851PMC
http://dx.doi.org/10.2147/OTT.S98906DOI Listing

Publication Analysis

Top Keywords

cell lines
16
sema4d
15
crc cell
12
crc
9
antiangiogenic therapy
8
colorectal cancer
8
human crc
8
immunohistochemical analysis
8
expression level
8
vitro migration
8

Similar Publications

High-grade-B-cell lymphoma (HGBL) with MYC and BCL2 and/or BCL6 rearrangements (double hit [HGBL-DH] or triple hit [HGBL-TH]), or not otherwise specified (HGBL-NOS), are considered to be more aggressive diseases among large B-cell lymphomas (LBCL). CD19-targeting Chimeric Antigen Receptor (CAR) T-cells have changed the prognosis of chemoresistant LBCL. Clinical and pathological data of patients treated for relapsed/refractory LBCL or HGBL in third line or more, all characterized by FISH, were collected from the French DESCAR-T registry.

View Article and Find Full Text PDF

: The aim of this study was to investigate the effect of substrate - polycaprolactone (PCL)-based porous membrane modified with rosmarinic acid (RA), (PCL-RA) and to determine the optimal values of low field laser irradiation (LLLT) as stimulators of biological response of RAW 264.7 macrophages. : The porous polymer membrane was obtained by the phase inversion method, the addition of rosmarinic acid was 1%wt.

View Article and Find Full Text PDF

Bacterial infections pose a serious threat to human health. For many years, there has been a search for materials that would inhibit their development. It was decided to take a closer look at various elastomeric materials with the addition of chitosan.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and -2 (SARS-CoV-2) are beta-coronaviruses (β-CoVs) that have caused significant morbidity and mortality worldwide. Therefore, a better understanding of host responses to β-CoVs would provide insights into the pathogenesis of these viruses to identify potential targets for medical countermeasures. In this study, our objective is to use a systems biology approach to explore the magnitude and scope of innate immune responses triggered by SARS-CoV-1 and -2 infection over time in pathologically relevant human lung epithelial cells (Calu-3/2B4 cells).

View Article and Find Full Text PDF

Toll-like receptor (TLRs) activation in multiple myeloma (MM) cells induces heterogeneous functional responses including cell growth and proliferation, survival or apoptosis. These effects have been suggested to be partly due to increase in secretion of cytokines such as IL-6 or IFNα among others from MM cells following TLR activation. However, whether triggering of these receptors also modulates production of immunoglobulin free light chains (FLCs), which largely contribute to MM pathology, has not been investigated in MM cells before.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!